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ABSTRACT

We address the intrinsic image decomposition problem for

separating an image into its intrinsic images, i.e., a reflectance

layer and a shading layer. Although this problem has been

studied for decades, it remains a significant challenge, par-

ticularly for real-world images. In this paper, we present a

novel method for estimating high-quality intrinsic images for

real-world images. Our method is built upon two observations

on real-world images: (i) reflectance is generally sparse and

there are limited number of reflectance values in an image;

(ii) shading usually has locally smooth transition. Based on

the two observations, we formulate the decomposition prob-

lem into an optimization framework, where we encourage

the reflectance sparseness by globally confining the number

of reflectance discontinuities among neighboring pixels using

an L0 norm, and utilize a total variation for maintaining lo-

cally smooth shading. We employ two benchmark datasets

and perform various experiments to evaluate our method. Ex-

perimental results show that our method outperforms state-of-

the-art methods, both qualitatively and quantitatively.

Index Terms— intrinsic image decomposition, real-

world images, reflectance, shading

1. INTRODUCTION

Intrinsic image decomposition aims to separate an image I
into its reflectance component R and shading component S as

I = R × S, with × denoting pixelwise multiplication. Since

each component of the intrinsic images represents a meaning-

ful physical property of the scene, many multimedia, com-

puter vision and computer graphics tasks would benefit from

such a decomposition, e.g., light information estimation [1],

image-based resurfacing, relighting, recoloring, re-texturing,

and 3D object compositing. Hence, intrinsic image decom-

position has long been a fundamental problem in the research

community.
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Intrinsic image decomposition remains a challenging and

severely ill-posed problem because there exists twice as many

unknowns (reflectance and shading) for each pixel. Although

there has been significant progress on this problem, existing

methods may fail to produce high-quality intrinsic images for

real-world scene-level images (namely images in the wild),

since this kind of image often contains a wide range of shapes

and materials, and complex illumination.

Previous method have made considerable research ef-

forts for estimating intrinsic images of real-world scenes.

These methods can be roughly classified into two categories:

optimization-based methods [2, 3] and learning-based meth-

ods [4]. However, as demonstrated in Fig. 1, they may fail to

produce satisfactory results. For instance, Bell et al. [2] pro-

duce overly blurred structures in the reflectance layer, while

Fu et al. [3] wrongly identify the shading variations on the

ceiling as reflectance changes. The reflectance component

generated by Li and Snavely [4] is dusty and unrealistic.

In this paper, we present a novel method to estimate high-

quality intrinsic images for real-world images. The proposed

method is built upon two observations, i.e., the reflectance

sparseness and the shading smoothness. Based on the two

observations, we formulate the intrinsic image decomposi-

tion as an energy minimization. Particularly, we encourage

reflectance sparseness by globally confining the number of

discontinuities within the reflectance component using an L0

norm. Moreover, we enforce the shading smoothness by a

total variation regularizer to alleviate the texture-copy prob-

lem. We solve the non-convex energy minimization by adopt-

ing the alternating direction of multipliers (ADMM) tech-

nique. Experimental results and comparisons to state-of-the-

art methods validate the effectiveness of our method.

The major contributions of this work are as follows:

• We present a novel intrinsic image decomposition al-

gorithm for real-world images, which incorporates an

L0 reflectance sparseness regularizer and total variation

based shading smoothness regularizer.

• We derive a new procedure based on the alternating di-

rection of multipliers (ADMM) technique for optimiz-

ing the proposed intrinsic decomposition model.

• We evaluate our method on two benchmark datasets

978-1-5386-1737-3/18/$31.00 c©2019 IEEE



(a) Input

(b) Bell et al. [2] (c) Fu et al. [3] (d) Li and Snavely [4] (e) Ours

Fig. 1: Comparison between our proposed method with the state-of-the-art methods. Please zoom in to compare results.

and compare it with several state-of-the-art methods.

Results show that our method outperforms previous

methods. Moreover, we demonstrate that our method

is also applicable to low-light image enhancement.

2. RELATED WORK

Currently, there is an immense literature on intrinsic image

decomposition. In this section, we focus on discussing most

related works rather than trying to be exhaustive.

Optimization-based methods. Due to the ill-posed nature

of the intrinsic image decomposition, a majority of the ap-

proaches choose to integrate priors on reflectance and shad-

ing, and formulate the decomposition problem into an op-

timization framework. For instance, the pioneer Retinex

algorithm [5] assumes large image gradients correspond to

changes in reflectance, while smaller gradients are derived

from shading discontinuities. Later, various priors have been

proposed to guide the decomposition [6, 2]. However, for im-

ages of real-world scenes, such hand-crafted priors are often

violated and would yield unsatisfactory results. Some recent

approaches propose to use the surface normals from RGB-

D cameras [7]. However, such methods assume high-quality

depth maps are available, which limits their applicability to

real-world consumer photographs.

Learning-based methods. Learning-based methods have re-

cently attracted a large amount of attention, since they do

not depend on the hand-crafted priors and can work automat-

ically without tedious parameter tuning. Barron and Malik

[8] learn a shape-from-shading model by employing priors on

reflectance, shape and shading. This method works well for

images of objects (such as images in the MIT intrinsic images

dataset [9]), but does not generalize well to real-world scenes.

Recently, deep-learning based methods have been widely de-

ployed to predict reflectance and shading by training mod-

els on the synthetic Sintel [10], MIT dataset [9] or the syn-

thetic ShapeNet datasets [11]. However, Sintel and ShapeNet

are synthetic datasets, while the MIT dataset only contain 20

object-centric images captured under unrealistic scenes, mak-

ing the networks trained on them may not suitable for real-

world scenes.

Two recent datasets, IIW [2] and SAW [12], that consist of

sparse, crowed-sourced reflectance and shading annotations

on real-world scenes have greatly spurred advances on this

problem. Using the datasets, several methods [13, 12] train

CNN-based classifiers and use the classifier outputs as priors

for intrinsic images. These methods report impressive results

on the two datasets. However, since the annotations are sparse

and the datasets fail to depict the diversity of the real-world

scenes, they usually generalize poor to images that do not ap-

pear in the datasets.

3. PROPOSED METHOD

In this section, we describe our novel method for estimating

intrinsic images. We first recall the image formation model,

and then elaborate the proposed decomposition model. Fi-

nally, we introduce an efficient ADMM based solver for the

non-convex optimization problem defined by our model, and

the implementation and parameter setting details.

3.1. Image Formation Model

Let I denote an input image normalized to [0,1], and R and

S denote the reflectance and shading components. By assum-

ing the scene of the image I is Lambertian, we can write the

intrinsic image decomposition problem as:

I = R× S, (1)

where S is a single-channel grayscale image because we as-

sume the real-world scenes are lit by white light as most previ-

ous methods do, while R is multi-channel RGB image. Akin

to [3], we also adopt the constraint I ≤ S. Our goal is to

estimate S and R from I . It is worth mentioning that our

method can be directly extended to process images with color

environment light by modeling S to be multi-channel.



3.2. Intrinsic Decomposition Model

We formulate the intrinsic image decomposition problem as

the minimization of the following objective function:

argmin
R,S

F(R,S) = fd+λrfr+λsfs+λafa s.t. I ≤ S , (2)

where fd, fr, fs and fa are different energy terms. λr, λs,

and λa are all positive balancing weights. Below we describe

each term in Eqn. (2) in detail.

Data fidelity term. According to Eqn. (1), valid intrinsic de-

composition should be able to reproduce the input image by

recombining the reflectance and shading with pixelwise mul-

tiplication. Hence, we define the following L2 error metric to

measure the reconstruction error:

fd = ||I −R× S||2
2
, (3)

where ‖‖p denotes the p-norm operator.

Reflectance sparseness term. Our one key observation of the

real-world images is that the reflectance is generally sparse,

i.e., piecewise constant. Based on this observation, we en-

courage the reflectance sparseness by globally confining the

number of reflectance discontinuities using a L0 norm, which

is defined as

fr = ||∇R||0, (4)

where ∇ is the gradient operator. Intuitively, this L0 spar-

sity term forces small reflectance discontinuities or noises

to be zeros, while preserving the prominent structure of re-

flectance. This property benefits obtaining piecewise constant

reflectance that is consistent to our observation, as demon-

strated in Fig. 2(d). Previous methods [2, 3] also adopt the

reflectance sparsity priors. In contrast, we advance them in

two aspects. First, they basically employ L2 [2] or L1 [3]

norm for sparsity, which make them not effective enough to

produce piecewise constant reflectance, as shown in Fig. 2(b)

and (c). Second, unlike them, our method is less sensitive to

noise and complex shading variations.

Shading smoothness term. Our another observation is that

shading tends to vary smoothly across smooth surface. This

observation on shading helps to determine the reflectance for

textured object, since it is common knowledge that textures

in real-world images are more likely to be incurred by re-

flectance instead of shading variations. Hence, we include a

total variation based shading smoothness term:

fs = ||∇S||2
2
. (5)

As demonstrated in Fig. 3, this term benefits addressing the

texture copy problem that resides in most existing methods.

Absolute scale term. Similar to [2], besides the shading

smoothness term, we also impose a absolute scale constraint

for shading, which is expressed as

fa = ||S − S||2
2
, (6)

(a) Input (b) L2 norm

(c) L1 norm (d) Ours (L0 norm)

Fig. 2: Comparison between our proposed L0 norm with L2

and L1 norm in encouraging reflectance sparsity. (b)-(d) are

the estimated reflectance layers derived from different spar-

sity pursuit norms (L2, L1 and L0).

(a) Input (b) Without fs (c) With fs

Fig. 3: Comparison of shading produced by our method with-

out and with the shading smoothness term. We can see that,

without the term, there are erroneous texture residuals in the

shading layer, while adding the term removes the issue.

where S is a positive constant. In our experiments, we empir-

ically set S = 0.5. Adopting this scale constraint has two

advantages. First, it helps avoid the ambiguity issue from

I = R × S, since for each decomposition we can enlarge

S by any value and reduce R by some value to get a different

valid decomposition. Second, it ensures that there are as few

extreme values of shading as possible.

3.3. Model Solver

The objective function in Eqn. (2) is non-convex due to the

L0 norm regularization. We adopt the alternating direction

method of multipliers (ADMM) technique to solve the opti-

mization problem model by dividing the intractable problem

into several tractable subproblems. Due to the space limit, we

only give brief introduction. For more detailed description of

the model solver, please refer to the supplementary material.

To apply ADMM, we introduce an auxiliary variable G =
∇R and an error variable X , and rewrite the objective func-

tion in Eqn. (2) as the following equivalent form:

argmin
R,S,G,X

||I −R× S||2
2
+ λs||∇S||2 + λa||S − S||2

2

+ λr{||G||0 + µ||∇R−G+X||2
2
}, s.t. I ≤ S

(7)
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Fig. 4: Results from different iterations and the convergence curves for reflectance (top) and shading (bottom).

where γ > 0 is the penalty parameter.

According to ADMM theory, the objective function in

Eqn. (7) can be further divided into three subproblems with

respect to G, R and S. By iteratively solving these subprob-

lems in an alternating order until convergence, we can obtain

solution to Eqn. (7). In particular, for the k-th iteration, the

subproblems are as follows.

Subproblem 1: we solve for Gk by the minimization below:

argmin
G

||G||0 + µk−1||∇Rk−1 −G+Xk−1||2
2
. (8)

As introduced in [14], the above problem can be solved in an

element-wise manner. Formally, for a pixel p, the solution is

Gk
p =

{

0, (Y k−1

j )2 ≤ 1

µk−1

Y k
p , otherwise

, (9)

where Y k−1 = Xk−1 − ∇Rk−1. Note that we initialize

X0 = 0 and R0 = I , and assume Xk−1 and Rk−1 are seen

as constants estimated from the previous iteration.

Subproblem 2: we can obtain Rk by solving the following

minimization:

argmin
R
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+λrµ
k−1||∇R−Gk+Xk−1||2

2
, (10)

which is a quadratic function with closed-form solution. Here

we adopt the Fast Fourier Transformation (FFT) to speed up

the optimization. Specifically, Rk is updated by

Rk=F
−1(

I/(Sk−1 + σ) + λrµ
k−1Φ

F (U)+λrµk−1Rk−1(
∑

d∈x,y

F ∗(∇d) · F (∇d))
),

(11)

where Φ = F ∗(∇x) ·F (Gk
x−Xk−1

x )+F ∗(∇y) ·F (Gk
y −

Xk−1

y ), F is the FFT operator, F ∗ is the conjugate trans-

pose, F−1 is the inverse FFT operator. ∇x and ∇y are first

order derivative operator along horizontal and vertical direc-

tion, respectively. U is the identity matrix. σ is a small con-

stant (typically 0.0001) that avoids division by zero. In this

fashion, the matrix inversion operation is avoided since the

derivative operator is diagonalized after FFT.

µk = 2µk−1 is multiplied by 2 in each iteration, and the

error variable Xk is updated by
{

Xk
x = Xk−1

x +∇xR
k −Gk

x ,

Xk
y = Xk−1

y +∇yR
k −Gk

y ,
(12)

Note that G, R, X and µ are estimated iteratively until ǫR =
(||Rk −Rk−1||/||Rk−1||) ≤ ǫ1.

Subproblem 3: we solve for Sk by minimizing

argmin
S
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2

+ λs||∇S||2
2
+ λa||S − S||2

2
. (13)

Similarly, the solution for Sk can be written as

Sk = F
−1(

λaS + I/(Rk + σ))

F (U) + λa + λs(
∑

d∈x,y

F ∗(∇d) · F (∇d))
) .

(14)

Note that due to R ∈ (0, 1] and I ≤ S, after Sk is updated

we further correct it by: S = max(S, I). S is updated until

ǫS = (||Sk − Sk−1||/Sk−1) ≤ ǫ2.

3.4. Implementation and Parameter Setting

We implement our algorithm using Matlab on a laptop with

Intel i7-6700 3.40GHZ CPU and 8GB of RAM. We have

experimentally found that λr = 0.001, λs = 0.01 and

λa = 0.06 works well for most testing images. The initial

value of µ is 1. ǫ1 and ǫ2 are fixed to 0.001 in all our exper-

iments. When ǫR ≤ ǫ1 and ǫS ≤ ǫ2, we stop the ADMM

based iterative optimization procedure. It takes about 2 min-

utes for our algorithm to process an 800× 600 image. Fig. 4

shows how the results updated with the iterations increased,

and the convergence curves for reflectance and shading.



Table 1: Quantitative comparison of different algorithm vari-

ants of our method on the IIW and SAW datasets in terms of

WHDR and SAW, respectively.

Algorithm variant WHDR (IIW) AP (SAW)

Without fr (L0) 23.54% 95.23%

fr (L0) using L1 instead 27.43% 92.23%

fr (L0) using L2 instead 38.23% 91.55%

Without fs 24.32% 93.12%

Without fa 29.34% 94.52%

Ours (full method) 19.20% 98.80%

4. EXPERIMENTAL RESULTS

4.1. Datasets and Evaluation Metrics

Benchmark datasets. Two benchmark datasets are employed

to evaluate the effectiveness of our approach. The first one is

the IIW dataset [2], which contains over 5,000 images cover-

ing a wide range of scenes, and has been annotated with about

100 human judgements on reflectance per image as ground

truth data. The second benchmark dataset is the SAW dataset

[12]. It includes 6,677 images with shading judgements ob-

tained via crowdsouring, along with shading annotations gen-

erated from RGB-D imagery.

Evaluation metrics. We employ two commonly-used met-

rics to quantitatively evaluate the performance of the pro-

posed method. The first one is the WHDR metric [2] defined

in the IIW dataset. The second metric we employed is AP [12]

for the SAW dataset. In general, lower WHDR and higher AP

indicates better performance.

4.2. Comparison with the State-of-the-art Methods

We compare our method with seven intrinsic image decompo-

sition methods: Grosse et al. [9], Shen et al. [15], Garces et

al. [16], Zhao et al. [6], Bell et al. [2], Fu et al. [3], and Li and

Snavely [4]. Among them, the first six are optimization-based

methods, while the last one is deep-learning-based method.

For a fair comparison, the results of other methods are gen-

erated by implementations provided by the authors with the

recommended parameter setting.

Table 2 reports the quantitative comparison results. We

can see that our method outperforms the other compared

methods in terms of the WHDR metric and AP metric for both

the two benchmark datasets. Note that, although the state-of-

the-art deep-learning-based method is directly trained on the

IIW and SAW datasets, we also achieve comparable or even

better results, and has better generalization capability.

We further provide visual comparison result in Fig. 7,

where we can see that our method can effectively separate

the reflectance and shading from the input image, while other

compared methods either fail to distinguish shading variations

from reflectance variations, or damage the structures in the re-

flectance layer and make the intrinsic images unrealistic.

Table 2: Quantitative comparison between our method and

the state-of-the-art methods on the IIW and SAW datasets.

Method WHDR (IIW) AP (SAW)

Retinex-color [9] 26.89% 91.93%

Shen et al. [15] 36.90% 87.23%

Garces et al. [16] 25.46% 96.89%

Zhao et al. [6] 23.20% 97.11%

Bell et al. [2] 20.64% 97.37%

Fu et al. [3] 36.43% 91.87%

Li and Snavely [4] 20.30% 97.90%

Ours 19.20% 98.80%

(a) Input (b) LIME [17] (c) Ours

Fig. 5: Application to low-light image enhancement.

(a) Input (b) Reflectance (c) Shading

Fig. 6: Failure case of our method.

4.3. Discussion

Ablation study. Besides the visual results in Figs. 2 and 3,

we also quantitatively evaluate the effectiveness of the energy

terms in our model. As shown in Table 1, replacing the L0

reflectance sparseness term with L2 and L1 sparsity pursuit,

or removing the shading smoothness term and the absolute

scale term decrease the performance of our method for both

the IIW and SAW datasets, which convincingly demonstrates

the effectiveness of each energy term.

Application to low-light image enhancement. Our method

is applicable to low-light image enhancement. Given a low-

light image, we first estimate the illumination S by per-

forming the intrinsic image decomposition, and adopt the

gamma correction (γ = 2.2) to obtain a modified illumina-

tion S′. With the modified illumination, we then update the

reflectance by R′ = I/S′ and treat R′ as the final enhanced

image, as done in [17, 18]. Fig. 5 shows an example. We

can see that, the LIME [17] overexposures the leaves and the

sky, while our method produces more appealing result with

moderate brightness, clear details, distinct contrasts and vivid

colors.

Limitations and future work. The limitation of our method

is that it may wrongly assign hard shadows that violate the

Lambertian assumption to the reflectance layer. Fig. 6 shows

an example. We can see that, the cast shadow led by shading



(a) Input

(b) Zhao et al. [6] (c) Bell et al. [2] (d) Fu et al. [3] (e) Li et al. [4] (f) Ours

Fig. 7: Visual comparison of intrinsic images produced by our method and some recent methods.

discontinuities also exists in the reflectance layer. In the fu-

ture, we would like to adopt the scene semantic and the depth

information to further remove this limitation. Second, our

current implementation based on CPU is not fast enough for

real-time applications. Hence, we leave it as future work to

improve its performance by GPU computation.

5. CONCLUSION

We have presented a novel method for estimating high-quality

intrinsic images for real-world scenes. Our method is built

upon two key observations of the real-world scenes, namely

the reflectance sparseness and the shading smoothness. Based

on these two observations, we design an optimization frame-

work. In particular, an L0 norm is utilized to encourage the

reflectance sparseness while preserving the prominent struc-

tures, and a total variation based shading smoothness term

is adopted to avoid the texture-copy problem. We have con-

ducted extensive experiments on the IIW and SAW datasets.

Experimental results show that our method outperforms the

state-of-the-art methods, both qualitatively and quantitatively.

6. REFERENCES

[1] L. Zhang, Q. Yan, Z. Liu, H. Zou, and C. Xiao, “Il-

lumination decomposition for photograph with multiple

light sources,” IEEE TIP, vol. 26, no. 9, pp. 4114–4127,

2017.

[2] S. Bell, K. Bala, and N. Snavely, “Intrinsic images in

the wild,” ACM TOG, 2014.

[3] X. Fu, D. Zeng, Y. Huang, X. Zhang, and X. Ding, “A

weighted variational model for simultaneous reflectance

and illumination estimation,” in CVPR, 2016.

[4] Z. Li and N. Snavely, “Learning intrinsic image decom-

position from watching the world,” in CVPR, 2018.

[5] E. H. Land. and J. J. McCann, “Lightness and retinex

theory,” JOSA, 1971.

[6] Q. Zhao, P. Tan, Q. Dai, L. Shen, E. Wu, and S. Lin,

“A closed-form solution to retinex with nonlocal texture

constraints,” IEEE TPAMI, 2012.

[7] J. T. Barron. and J. Malik, “Intrinsic scene properties

from a single rgb-d image,” in CVPR, 2013.

[8] J. T. Barron and J. Malik, “Shape, illumination, and

reflectance from shading,” IEEE TPAMI, 2015.

[9] R. Grosse, M. K. Johnson, E. H. Adelson, and W. T.

Freeman, “Ground truth dataset and baseline evalua-

tions for intrinsic image algorithms,” in ICCV, 2009.

[10] D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black, “A

naturalistic open source movie for optical flow evalua-

tion,” in ECCV, 2012.

[11] A. X. Chang, T. Funkhouser, L. Guibas, Hanrahan,

Q. P., Huang, Z. Li, and J. Xiao, “Shapenet: an

information-rich 3d model repository,” arXiv preprint

arXiv:1512.03012, 2015.

[12] B. Kovacs, S. Bell, N. Snavely, and K. Bala, “Shading

annotations in the wild,” in CVPR, 2017.
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