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ABSTRACT
We address the problem of correcting the exposure of underexposed
photos. Previous methods have tackled this problem from many
different perspectives and achieved remarkable progress. However,
they usually fail to produce natural-looking results due to the ex-
istence of visual artifacts such as color distortion, loss of detail,
exposure inconsistency, etc. We find that the main reason why
existing methods induce these artifacts is because they break a
perceptually similarity between the input and output. Based on
this observation, an effective criterion, termed as perceptually bidi-
rectional similarity (PBS) is proposed. Based on this criterion and
the Retinex theory, we cast the exposure correction problem as an
illumination estimation optimization, where PBS is defined as three
constraints for estimating illumination that can generate the desired
result with even exposure, vivid color and clear textures. Qualita-
tive and quantitative comparisons, and the user study demonstrate
the superiority of our method over the state-of-the-art methods.
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1 INTRODUCTION
Exposure is one of the most important factors that determines
whether the photographers can achieve the desired effect. For this
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Figure 1: Top: two underexposed photos. Middle: results of
the state-of-the-art [22]. Bottom: our results.

reason, most modern cameras are designed to allow exposure con-
trol. However, capturing well-exposed photos remains a challenge
for non-expert users, since exposure is simultaneously determined
by shutter speed, lens aperture and scene luminance, which are gen-
erally hard to control. As recording and sharing daily life in terms
of photos has been evolved into a trendy lifestyle, lots of under-
exposed photos are inevitably created. Fig. 1 shows two examples.
Basically, these images have barely invisible details and dull colors
in underexposed regions, which severely limit their applicability
for subsequent scenarios, e.g. Instagram and Facebook.

Many approaches have been developed for addressing this prob-
lem, which can be roughly classified into five main categories:
histogram-based methods [5, 11, 19], S-curve based methods [1, 34],
Retinex-based methods [9, 13, 31], fusion-based methods [8, 36]
and learning-based methods [3, 22, 28]. Histogram-based methods
are usually efficient, but may wash out details and induce over-
saturated appearance. S-curve based methods rely on sigmoid map-
ping to adjust the exposure. They may incur uneven exposure or
halo artifacts around the areas with abrupt exposure transition.
Retinex-based methods work under the Retinex assumption [18]
that an image can be decomposed into the product of reflectance
and illumination. Although recent works in this category have
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demonstrated impressive results, they typically suffer from an local
overexposure issue. Fusion-based methods correct the exposure by
fusing multiple inputs with different exposures into a single image.
However, it will degrade the region contrast. Since learning-based
methods are usually trained on synthesized images, they tend to
produce unrealistic results.

In this paper, we propose a novel method for exposure correc-
tion of underexposed photos. Our main observation is that it is
feasible to avoid the commonly encountered visual artifacts by pre-
serving a visual similarity between the input and output. Based
on this observation, we propose an effective criterion, called per-
ceptually bidirectional similarity (PBS), for explicitly describing
how to ensure the perceptual similarity between the two images.
Then, we cast the exposure correction problem as a Retinex-based
illumination estimation optimization, where we solve for the actual
illumination of the input image under the constraint of PBS. With
the estimated illumination, we obtain the final result based on the
Retinex theory. We employ the ADMM technique [2] for optimiz-
ing the non-convex problem involved in our optimization model.
Experiments on a number of challenging underexposed images and
a user study demonstrate the advantage of our method over the
state-of-the-art methods.

The main contributions of this paper are summarized as follows:
(1) We propose PBS, an intuitive and effective criterion, that de-
scribes how to avoid the visual artifacts commonly encountered by
previous methods. (2) We develop a PBS-constrained illumination
estimation optimization model, which can produce high-quality
exposure correction results for challenging underexposed photos.
(3) We derive an ADMM based procedure for efficiently solving the
proposed optimization model.

2 RELATEDWORK
2.1 Histogram-based Methods
Histogram equalization (HE) [11] is one of the most widely adopted
technique for exposure adjustment due to its simplicity. However,
this technique may lead to loss of detail and appearance distortion,
because it ignores the relationship between pixels. To address this
issue, local HE methods [26, 39] are developed, but may distort the
overall appearance. Celik et al. [5] proposed to enhance contrast by
using a 2-D histogram based on the mutual relationship of spatially
neighboring pixels. Lee et al. [19] further extended this work to
multiple layers. Despite their effectiveness in contrast enhance-
ment of normally exposed images, they typically fail to restore the
underexposure.

2.2 S-curve based Methods
A well-known solution is Gamma correction. Similar to global HE
based methods, it may also produce unsatisfying results. Bennett
and McMillan [1] decomposed the input image into two layers by
using bilateral filter [29], and then performed different S-curve
mapping for each layer. The final result is obtained by recombined
the two layers. This method can well preserve the details, but fails
to maintain the global exposure consistency. Yuan and Sun [34]
presented a region aware exposure correction method, where they
segmented the input image into different subregions, and individ-
ually devised S-curve mapping for each subregion. However, it is

(a) Input (b) Illumination (c) Reflectance

Figure 2: Retinex theory and its relationship to exposure cor-
rection. Images from Grosse et al. [12].

sensitive to the graph segmentation quality, and may not work well
for challenging images with uneven exposure.

2.3 Retinex-based Methods
Jobson et al. [15, 16] made some early attempts, but their results
are usually unrealistic. Wang et al. [31] presented a naturalness
preserved algorithm by utilizing a lightness-order-error measure.
However, it tends to produce results with dim details and requires
expensive computational cost. Fu et al. [9] proposed a weighted
variational model for simultaneously estimating reflectance and
illumination. The limitation is that it may incur ghosting artifacts
around regions with abrupt exposure transition. Guo et al. [13] esti-
mated an initial illumination map, and refined it by only preserving
the main contour. This method is effective in handling globally un-
derexposed images, but may lead to overexposure issue for locally
underexposed images. Our method also belongs to this category.
In contrast, by maintaining PBS, we successfully avoid the visual
artifacts encountered by previous methods.

2.4 Fusion-based Methods
The first framework is proposed by Mertens et al. [24] for recon-
structing HDR image from multiple LDR images. Inspired by [24],
Zhang et al. [36] constructed multi-exposure image sequence for
the input image by sampling multiple S-curve mappings. They then
progressively fused the image sequence with predefined perceptual
metrics to produce the final result. Similarly, Fu et al. [8] derived
multiple illumination maps based on both the Retinex theory and
S-curve function. Thereafter, they obtained an adjusted illumina-
tion by blending advantages from different illumination maps, and
computed the final result by compensating the adjusted illumina-
tion back to the reflectance. A common limitation of this kind of
method is that they may degrade region contrast, and will produce
unrealistic result for highly textured images.

2.5 Learning-based Methods
Bychkovsky et al. [3] proposed to learn global tone adjustment from
expert retouched pairwise training images. However, this method
is not designed for underexposed images, which differs our goal in
essence. Lore et al. [22] presented a deep autoencoder for adaptively
brightening underexposed images, but its advantage mainly lies in
image denoising. Shen et al. [28] constructed MSR-net based on the
multiscale Retinex theory and the feedforward convolution neural
network. However, they may produce unrealistic results since their
model is trained on synthesized pairwise images.



(a) Input (b) Histogram equalization (c) Bennett and McMillan [1] (d) Yuan and Sun [34]

(e) Wang et al. [31] (f) Fu et al. [9] (g) Guo et al. [13] (h) Ours

Figure 3: Issues encountered by previous methods. Photo from Bychkovsky et al. [3]. (Better view in electronic version).

3 OUR APPROACH
Wefirst recall the Retinex theory [18], and analyze its relationship to
exposure correction. Then, we introduce PBS and its mathematical
description. Finally, we formulate the exposure correction problem
as a PBS-constrained illumination estimation optimization, and
describe an ADMM based procedure for solving the optimization.

3.1 Retinex Theory
The Retinex theory assumes that an observed image I is the product
of reflectance R and illumination S :

I = S × R, (1)

where S measures the amount of light reflected by the scene, and
is determined by the light condition and the scene geometry. ×
denotes pixel-wise multiplication. R represents the material RGB
color that describes how objects reflect light, which is invariant to
S and other imaging conditions. Note that, we in this paper assume
that each color channel of R shares the same grayscale illumination.

In fact, exposure correction can be seen as a procedure for esti-
mating the illumination independent reflectance, because it aims to
remove the illumination effect and recover the original appearance
of the scene objects. Fig. 2 validates this hypothesis, where the
reflectance component exhibits a compelling exposure correction
result for the original image. However, directly decomposing an
input image into reflectance and illumination yields the intrinsic
image decomposition problem [4, 7, 20, 27, 37, 38], which is inher-
ently ill-posed and may produce unrealistic results [10, 13], because
this problem is often built upon a reflectance smoothness prior
not suitable for exposure correction. Thus, to simplify the problem
while obtaining realistic results, we only estimate S , and then obtain
the desired result by R = I/S , where the division is pixelwise.

3.2 Perceptually Bidirectional Similarity
We begin by examining the issues encountered by previous methods
in Fig. 3. As shown, color distortions, loss of details and exposure
inconsistency are three main issues. Our observation is that the

main reason why these results are not satisfactory is because they
are not consistent to the input. For example, Wang et al. [31] turn
the girl’s face and arms to gray, which leads to loss of their un-
derlying color and introduction of mismatched color. Bennett and
McMillan [1] and Guo et al. [13] overexpose the background and
degrade the textures. Result of Yuan and Sun [34] and Fu et al. [9]
exhibit clear exposure inconsistencies around the arms and the
body, while these regions have consistent exposure in the input.

To remove the issues encountered by existing methods, we pro-
pose to ensure the visual consistency between the input and output
by preserving a perceptual similarity criterion, namely PBS. For-
mally, we define PBS as the following two requirements between
the input I and the expected result R:

• All colors and textures in I should exist in R, and appear as
properly enlarged version. Regions have consistent exposure
in I should also have consistent exposure in R.

• R should not contain colors, textures or exposure inconsis-
tency that originally do not exist in I .

To utilize PBS, we convert it into specific numerical constraints
on color, texture and exposure below.

Color Consistency Constraint. Suppose the input image I is
normalized to [0,1]. Since R = I/S , smaller S will produce R with
higher RGB values, and larger S corresponds to R with lower RGB
values. The upper bound of S is 1, in which case the input will be
directly taken as the output. Intuitively, the color inconsistency will
happen when S is too small to ensure that each color channel of
estimated R are within the normal color gamut [0,1]. As a result,
unpredictable colors will be introduced due to naive color trunca-
tion. To avoid this issue, we constrain the illumination at each pixel
no less than the value that can just enlarge the maximum color
channel of I to 1. Mathematically, we have

max Icp = Γ(Smin
p ), c ∈ {r ,д,b}, (2)

where Icp is a color channel at pixel p. Γ(·) is the gamma func-
tion Γ(α) = αγ with γ ∈ (0, 1), which is an optional operation
used for further illumination adjustment. Based on Eqn. 2, we have



(a) (b) (c) (d) (e)

Figure 4: An example backlit photo restored by our method. (a) Input. (b) Initial illumination S ′. (c) Result computed from S ′.
(d) Our estimated illumination S . (e) Our result from S . Note the grayscale illuminations are visualized using the jet colormap.

Smin
p = (max Icp )1/γ . The color consistency constraint can then be
characterized as Smin

p ≤ Sp ≤ 1.
Texture Consistency Constraint. To ensure texture consis-

tency, we reformulate PBS from a viewpoint of edge consistency as
follows: (1) If I is smooth at pixel p, then R should also be smooth
at p; (2) If I has an edge at pixel p, then R should have a stronger,
or at least equivalent edge at p. By associating edge with gradient
and directional derivatives, above two cases can be defined by:{

∇Rp = 0,
��∇Ip �� ≤ τ

∂dRp/∂d Ip ≥ 1,
��∇Ip �� > τ

(3)

where ∇ denotes the gradient operator. ∂d ∈{x,y } denotes the first
order derivative along the horizontal and vertical. τ is a small con-
stant (typically 1e-5) used for determining whether there is an edge
at a pixel in the input image I . In general, small τ can better pre-
serve textures, while large τ may lead to loss of textures. Eqn. 3 can
also be expressed in terms of S by replacing R with I/S .

Exposure Consistency Constraint. Illumination distribution
essentially determines whether an image has consistent exposure.
According to the Retinex theory, the key to preserving the exposure
consistency inR is to ensure that illumination S is piecewise smooth,
which also complies with the illumination distribution in natural
images and can help to recover clear details from underexposed
regions. In what follows, we will introduce how we use a total
variation measure to obtain piecewise smooth S .

3.3 Illumination Estimation Optimization
The input image actually reflects the coarse illumination distri-
bution. Inspired by [18], we obtain an initial illumination S ′ by
S ′p = max Icp . The reason why we choose the maximum values
among the RGB channels is that this setting can avoid sending color
channels out of the color gamut when performing Rp = Icp/S

′
p .

With the initial illumination and the PBS constraints, we define
the following framework for estimating the ideally illumination
that can produce high-quality results free of aforementioned issues:

argmin
S

E(S) = Ed (S) + λcEc (S) + λtEt (S) + λeEe (S), (4)

where Ed denotes the data term that enforces S to be similar with
S ′. Ec , Et and Ee denote the PBS constraints on color, texture and
exposure. λc , λt and λe are balancing weights.

Inspired by previous Retinex algorithms [7, 17, 25, 30], which
have demonstrated that total variation has good performance in
promoting illumination smoothness, we alternatively adopt the rel-
ative total variation (RTV) introduced by Xu et al. [32] for obtaining

piecewise smooth S . It is worth mentioning that any other smooth-
ness regularizer can also work with our framework. By replacing
the energy terms in Eqn. 4 with specific formulations, the objective
function can be expressed as follows:

argmin
S

∑
p

(Sp − S ′p )
2 + λ

(
H(Sp ) +V(Sp )

)
,

s .t . Smin
p ≤ Sp ≤ 1,

{
∇(Ip/Sp ) = 0,

��∇Ip �� ≤ τ
∂d (Ip/Sp )/∂d Ip ≥ 1,

��∇Ip �� > τ

(5)

whereH(Sp ) andV(Sp ) denote the horizontal and vertical relative
total variation (RTV) measure. λ is a weight.

3.4 Solver
The objective function in Eqn. 5 involves an non-convex problem.
To obtain its solution, we develop an efficient solver based on the
ADMM technique [2]. Before describing the details, we first trans-
form the Retinex theory in Eqn. 1 to log-domain, so that we can
reduce the nonlinear operation on S in Eqn. 3 to linear form.

Let I = log(I ), R = log(R), S = log(S) and S′ = log(S ′), we
then have I = R + S. The color and texture constraints can be
accordingly expressed as Smin

p ≤ Sp ≤ 0 and{
∇(I − S)p = 0,

��∇Ip �� ≤ τ

eI−S∂d (I − S)p/(e
I∂dIp ) ≥ 1,

��∇Ip �� > τ
(6)

As ∂(log(v))
∂x = 1

v
∂v
∂x , similar to [9], we multiply by R = eI−S and

I = eI on both sides of the second line of Eqn. 6 to eliminate the
impact of 1

v . Note that R can be estimated from previous iteration
and seen as constant during the optimization.

According to analysis in [32],H(Sp ) can be written as:

H(Sp ) =
∑

q∈Np
uxqw

x
q (∂xSq )

2, (7)

where uxq = Gσ ∗ (
��Gσ ∗ ∂xSq

��+ϵ)−1 andwx
q = (

��∂xSq ��+ϵ)−1.Gσ
denotes the Gaussian smoothing with standard deviation σ = 3. ∗
denotes the convolution operator.V(Sp ) is defined similarly. With
above transformation, the main body of the objective function in
Eqn. 5 can be further written in a matrix form:S − S′

2
F + λ

(
STDTxHxDx S + STDTyHyDyS

)
,

s .t . Smin ≤ S ≤ 0,
{

∇(I − S) = 0, Mp = 0
CdDd (I − S) ≥ 1, Mp = 1

(8)

where S, S′ and I are vector representation of S, S′ and I. Hx and
Hy are diagonal matrices with values Hx [i, i] = uxi w

x
i , Hy [i, i] =



Algorithm 1 Illumination Estimation Optimization

Input: Input image I , initial illumination S ′ , parameter λ
1: Initialization: Set Z, X, Y, ξ , ζ , π as zero matrices. Set k = 1,

β,η > 0
2: while not converged do
3: Solve Sk+1 in Eqn. 11a
4: Solve Zk+1, Xk+1 and Yk+1 in Eqn. 12
5: Update ξk+1, ζk+1 and πk+1 in Eqn. 13
6: β = ηβ and k = k + 1
7: end while

Output: The estimated illumination S

u
y
i w

y
i . Dx and Dy are the Toeplitz matrices from the discrete gradi-

ent operators with forward difference.M is a binary matrix indicat-
ing whether a pixel p satisfies

��∇Ip �� > τ . Cx and Cy are diagonal
matrices consisting of constant parts in Eqn. 6.

To apply ADMM, we reformulate the problem in Eqn. 8 as the
following equivalent form:

min
S

S − S′
2
F + λ

(
STWx S + STWyS

)
s .t . J(S) = Z,F x (S) = X,F y (S) = Y,

Z = 0,X ≥ 1,Y ≥ 1, Smin ≤ S ≤ 0,

(9)

where Wx = DTxHxDx , J(S) = ∇(I − S) and F x (S) = CxDx (I −
S). Wy and F y (S) are defined similarly. Z, X and Y are auxiliary
variables formaking the original problem separable. The augmented
Lagrangian function of Eqn. 9 is:

L(S,Z,X,Y, ξ ,ζ ,π ) =
S − S′

2
F + λS

TWx S

+ λSTWyS + ⟨ξ ,Z − J(S)⟩ + β ∥Z − J(S)∥2F

+ ⟨ζ ,X − F x (S)⟩ + β
X − F x (S)

2
F

+ ⟨π ,Y − F y (S)⟩ + β
Y − F y (S)

2
F ,

(10)

where ξ , ζ and π are Lagrangian multipliers, β is the penalty pa-
rameter. ⟨·⟩ computes the standard trace inner product.

The problem in Eqn. 10 can be further divided into following
subproblems with respect to S, Z, X and Y:

Sk+1= argmin
Smin≤S≤0

L(S,Zk ,Xk ,Yk ,ξk ,ζk ,πk ), (11a)

Zk+1=argmin
Z=0

L(Sk+1,Z,Xk ,Yk ,ξk ,ζk ,πk ), (11b)

Xk+1=argmin
X≥1

L(Sk+1,Zk+1,X,Yk ,ξk ,ζk ,πk ), (11c)

Yk+1=argmin
Y≥1

L(Sk+1,Zk+1,Xk+1,Y,ξk ,ζk ,πk ), (11d)

where k denotes the kth iteration. By iteratively solving subprob-
lems one at a time while fixing others at their most recent values
until convergence, we can obtain the solution to Eqn. 9. Specifically,
we first obtain Sk+1 by solving the subproblem in Eqn. 11a. With
Sk+1, we then compute Zk+1, Xk+1 and Yk+1 by:

Zk+1 =P0(Jk+1(Sk+1) − ξk/β),

Xk+1 =P+1(F
x
k+1(Sk+1) − ζk/β),

Yk+1 =P+1(F
y
k+1(Sk+1) − πk/β),

(12)

0 1 2 3 4 5 6 7 8 9 10

Iterations

iter 7

iter 2

iter 0

Figure 5: Convergence curve of our algorithm. The ordinate
axis indicates the iterative error of the solution.

where P0(·) projects entries that satisfyMp = 0 to zero. P+1(·) en-
sures that other entries (Mp , 0) are no less than 1. The Lagrangian
multipliers are updated by:

ξk+1 = ξk + ηβ(Z − Jk+1(Sk+1)),

ζk+1 = ζk + ηβ(X − F x
k+1(Sk+1)),

πk+1 = πk + ηβ(Y − F
y
k+1(Sk+1)),

(13)

where η ∈ (0, 2) is the relaxation parameter. The whole ADMM
procedure for our approach is summarized in Algorithm 1.

3.5 Implementation and Parameter Settings
We use projected gradient descent method [21] for solving the sub-
problem in Eqn. 11a. The range constraint such as Smin ≤ S ≤ 0 can
be accordingly ensured by a projection operation. The key parame-
ter of our approach is λ, which determines the smoothness level of
the illumination S . In general, we use larger λ for highly textured
images. γ is another parameter that affects the result quality. In
all our experiments, we set λ = 0.8 and γ = 0.6. The final result is
obtained by R = I/Sγ . Fig. 4 shows an example.

The convergence condition of Algorithm. 1 is: (i) the difference
between two consecutive solutions are no more than a small con-
stant (10e-5), or (ii) the maximum number (we empirically set it as
20) of iterations is reached. We have experimentally found that our
algorithm has good convergence rate when β = 1 and η = 1.9, and
usually converges in 5-10 iterations. Fig. 5 plots the convergence
curve of our algorithm for an example image.

4 EXPERIMENT
In this section, we present experiments to evaluate the performance
of our method. We first demonstrate our advantage over state-of-
the-art methods [6, 8, 13, 22, 31, 34] by qualitative and quantita-
tive comparisons, and a user study. The testing datasets are NPE
dataset [31], MEF dataset [23, 35], MF dataset [8], LIME dataset [13]
and the VV dataset 1. It is worth noting that we implement [34] by
ourselves. While codes of other comparative methods are obtained
from the author’s websites. Then, we perform evaluation of the
proposed method by conducting one-by-one evaluation of the PBS
constraints, and analyzing the effect of different parameter settings,
the time complexity and its limitations. All the experiments are
carried out on a PC with Intel Core i5-7400 CPU using Matlab. Our
code is available at: http://isee.sysu.edu.cn/~zhangqing/.
1https://sites.google.com/site/vonikakis/datasets

http://isee.sysu.edu.cn/~zhangqing/


(a) Input (b) Dong et al. [6] (c) Yuan and Sun [34] (d) Wang et al. [31]

(e) Fu et al. [8] (f) Guo et al. [13] (g) Lore et al. [22] (h) Ours

Figure 6: Comparison with state-of-the-art methods on the image “Man”. (Better view in electronic version).

(a) Input (b) Dong et al. [6] (c) Yuan and Sun [34] (d) Wang et al. [31]

(e) Fu et al. [8] (f) Guo et al. [13] (g) Lore et al. [22] (h) Ours

Figure 7: Comparison with state-of-the-art methods on the image “Candle”. (Better view in electronic version).

4.1 Comparison with State-of-the-Art Methods
Here, we demonstrate the advantage of our method over the state-
of-the-art methods in terms of both qualitative and quantitative
comparisons, and a user study.

Qualitative Comparisons. Fig. 6 examines the performance
of different methods in handling a challenging backlit photo with
severely underexposed foreground. [6] enhances the background,
but makes the foreground even more underexposed. [34] improves
the underexposure. However, compared with the background, the
foreground is still underexposed, and lots of details are still barely
invisible. [31] restores the foreground, but induces clear color distor-
tions. Similar to [34], [8] also cannot recover all hidden details from
the underexposure. [13] is effective in enhancing the local contrast.
However, it fails to ensure exposure consistency. As a result, the left
part of the person is darker than the right part, which makes the
result somewhat unnatural. Result of [22] is unrealistic due to the

distorted appearance and halo artifacts. In contrast, our method suc-
cessfully lights up the foreground, and obtains high-quality result.
Another comparison is conducted on an indoor image captured
under low light condition in Fig. 7. As shown, our method avoids
artifacts such as color distortions and exposure inconsistencies.
Moreover, it restores the exposure for the candlestick and mug,
which is not enabled by most comparative methods.

Quantitative Comparisons. Similar to previous methods [8],
we adopt two commonly used no reference image quality assess-
ment metrics, namely discrete entropy (DE) [33] and natural image
quality evaluator (NIQE) [14] for quantitative evaluation. DE mea-
sures the performance of detail enhancement. NIQE assesses the
overall naturalness of the result. In general, higher DE means that
details or visibility are better enhanced, while lower NIQE indi-
cates higher overall naturalness. Table 1 shows the quantitative
comparisons on datasets. The original average DE and NIQE values



Table 1: Comparison of average DE and NIQE on five datasets.

Dataset Original Dong et al. [6] Yuan and Sun [34] Wang et al. [31] Fu et al. [8] Guo et al. [13] Lore et al. [22] Ours
DE NIQE DE NIQE DE NIQE DE NIQE De NIQE DE NIQE DE NIQE DE NIQE

NPE 6.563 3.895 6.841 3.639 7.135 3.412 7.221 3.182 7.376 3.309 7.539 3.443 7.434 3.483 7.643 3.021
MEF 6.071 4.277 6.658 3.945 7.108 3.751 7.142 3.586 7.244 3.613 7.321 3.701 7.237 3.861 7.561 3.372
MF 6.365 3.357 6.937 3.362 7.042 3.196 7.113 3.017 7.345 3.167 7.499 3.122 7.431 3.149 7.739 2.813
LIME 6.025 4.478 6.557 4.315 6.725 4.186 6.904 4.096 7.076 4.067 7.389 4.102 7.214 4.213 7.452 3.569
VV 6.638 3.382 7.214 3.279 7.389 2.877 7.427 2.732 7.436 2.793 7.529 2.895 7.367 2.972 7.812 2.746

Dong et al. Yuan and Sun Wang et al. Fu et al. Guo et al. Lore et al. Ours
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Figure 8: User study. We show the average points obtained by each method on different datasets.

for different datasets are also shown for reference. As shown, all
methods increase DE through contrast enhancement, and reduce
the NIQE because of lightening the underexposed regions. Our
method achieves higher DE and lower NIQE than other methods
on almost all the datasets. The reason why we obtain better results
is twofold: (1) Our method can effectively recover and enlarge the
barely invisible details due to the merit of the texture and expo-
sure consistency constraints; (2) We can avoid the visual artifacts
commonly encountered by previous method.

User Study. We performed a user study on the five datasets
(106 images in total) to demonstrate that our method can generate
visually more appealing results than state-of-the-art methods [6, 8,
13, 22, 31, 34]. The detailed procedure is introduced below.

We invited 30 subjects to rank their preferences to results of
different methods. For each input image, each subject was asked to
rate 7 results (ours and other 6 comparative methods) using 1 (least
favorite) to 7 points (most favorite), according to the following 4
requirements for the desired result : (1) clear details in originally
underexposed regions, (2) no loss of details, (3) no color distor-
tions, (4) no exposure inconsistencies. To avoid the subjective bias,
subjects were assigned with anonymous results in random orders.
In addition, the user study was conducted in the same environ-
ment (room, light and monitor). After the subjects finished rating
all the results, we computed the average points obtained by each
method on different datasets. We summarize the user study results
in Fig. 8. As can be seen, results generated by our algorithm are
more preferred by human subjects in average.

4.2 Evaluation of the proposed Method
We first validate the effectiveness of the proposed PBS constraints.
Then, we analyze how λ andγ affect the result. Finally, we introduce
the time complexity and the main limitations of our method.

Validation of PBS Constraints. As shown in Fig. 9, without
the color consistency constraint, the right side of the boy’s face ex-
hibits clear color distortion. The textures on the curtain are severely

degraded without the texture constraint. Without the exposure con-
straint, we fail to generate result with smooth exposure and clear
details. In contrast, we obtain a high-quality result by combing
all the three PBS constraints. Since we employ Gamma function
for post processing, we compare with it for illustrating the dif-
ference. In addition, we show result directly computed from the
initial illumination S ′, which is used as a baseline. Our illumination
estimation optimization essentially involves a smoothing proce-
dure to the initial illumination, which is akin to the original RTV
method [32]. As we use RTV in our model, we also compare with
the result derived from [32]. As shown, our method produces more
realistic result with consistent exposure and clear details, while
result of RTV method has overexposed appearance.

Effect of varying λ andγ . Fig. 10 evaluates the effect of varying
λ. As shown, larger λ produces result with stronger local contrast.
However, this effect becomes less obvious when λ > 0.8. As larger
λ typically requires more iterations to converge, we fix λ = 0.8 as a
trade-off. Fig. 11 shows how the Gamma function affects the final
result. We can see that result without Gamma function (namely
γ = 1) is also satisfactory, but too bright to be consistent with the
image aesthetics. Decreasing γ can reduce the overall brightness,
but at the cost of lowering the visibility. To obtain better visual
results, we set γ = 0.6 for all our tested images.

Time Complexity. Our method takes about 3 seconds to pro-
cess a 800 × 1200 image, which is slightly slower than [8] and [13].
However, our current Matlab implementation is neither optimized
nor accelerated. By using more efficient solvers for the subproblem
in Eqn. 11a and the GPU parallelization, our method can be sped
up to provide nearly instant feedback for consumer photographs.

Limitations. As shown in Fig. 12, our method induces disturb-
ing blocking artifacts for regions that are nearly pure black (most
color channels are close or equal to 0). Another limitation is that
our method will enlarge noise. In the future, we will explore the
possibility of leveraging deep learning to handle pure black regions,
and simultaneously remove the noise.
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Figure 9: Evaluation of the proposed PBS constraints. (a) Input. (b) Gamma correction result using Iγ with γ = 0.4. (c) Result
from the initial illumination S ′. (d) Result from RTV [32] smoothed illumination. (e)-(g) are our results without the color,
texture and exposure consistency constraint, respectively. (h) Our results with all the constraints.

(a) Input (b) λ = 0.1

(c) λ = 0.8 (d) λ = 2.0

Figure 10: Effect of varying λ on the result.

(a) Input (b) γ = 0.3 (c) γ = 0.6 (d) γ = 1.0

Figure 11: Effect of varying γ on the result.

5 CONCLUSION
In this paper, we have proposed an effective criterion, called per-
ceptually bidirectional similarity (PBS), for enabling high-quality
exposure correction of underexposed photos. The PBS reveals why

Figure 12: Limitations. Left: input. Right: our result.

existing methods fail to produce natural-looking results, and illus-
trates how we can produce results without these disturbing issues
by preserving a visual similarity between the input and the output.
Based on this criterion and the Retinex theory, we cast the expo-
sure correction problem as a illumination estimation optimization,
where PBS is converted into three constraints on illumination for si-
multaneously ensuring the color, texture and exposure consistency.
We derive an ADMM based procedure for efficiently optimizing
the non-convex model. Qualitative and quantitative comparisons
along with the user study have demonstrated the advantage of our
method over state-of-the-art methods.
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