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Video Background Completion Using
Motion-guided Pixels Assignment Optimization

Zhan Xu, Qing Zhang, Zhe Cao, and Chunxia Xiao

Abstract—Background completion for consumer videos cap-
tured by free-moving cameras is a challenging problem. In
this paper, we present a new approach to complete the holes
left by removing objects with motion-guided pixels assignment
optimization. We first estimate the motion field in the holes by
applying a two-step motion propagation method. Then, using
estimated motion field as guidance, the missing parts of the video
are completed by performing pixels assignment optimization
based on Markov Random Field (MRF), which optimally assigns
available pixels from other neighboring video frames to the
missing regions. Finally, we present an illumination adjusting
approach to eliminate the illumination inconsistency in the
completed holes. We validate our method on a variety of videos
captured by free-moving cameras. Compared with previous meth-
ods, our method works better to keep the completed background
spatio-temporally coherent, to complete video background with
much depth discontinuity, and to make the illumination consistent
in the completed region.

Index Terms—video completion; motion field; Markov Random
Field; illumination transfer.

I. INTRODUCTION

V IDEO background completion is an important problem
in computer vision and computer graphics communities,

and has a variety of applications. For example, in movie
production, unwanted people such as the staff need to be
removed from the movie footage. In video-based street view
construction, we hope that the videos record background
scenes without being occluded by walking people and moving
vehicles. Many video completion methods have been proposed
in recent years, refer to [1] [2] for a survey. However, as it is
an extremely challenging problem, although impressive results
have been produced, these methods usually work well under
some special conditions. For instance, the videos are recorded
by static or parallel-to-scene moving cameras.

Completing the static background in the videos with free-
moving camera suffers from the following difficulties. Firstly,
for a video captured by free-moving camera, the observed
background usually exhibits some perspective distortion, espe-
cially for camera with large-scale compound movement. Thus,
it is difficult to recover the occluded background consistent
with the corresponding camera perspective and the surround-
ings during completion processing. Secondly, as human’s vi-
sion system is sensitive to spatio-temporal discontinuity of the
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video, the recovered background should be spatio-temporally
coherent within the hole and consistent with the regions around
the hole. Finally, outdoor scenes usually exhibit illumination
variation. To achieve visually pleasing results, the illumination
of the completed background should be consistent with that
of the surrounding scenes. The illumination inconsistency
artifacts occurring around the hole boundary and within the
hole should be avoided.

In this paper, we propose a novel video background com-
pletion approach for videos captured by free-moving cameras.
Similar to methods [3] and [4], our method is based on the
following assumption: the missing region in one frame can be
visible in its neighboring frames, despite some projective dis-
tortion. Thus, we can collect appropriate information from the
available video content to complete the occluded background.
By performing pixels assignment optimization, we can reduce
the background distortion under the corresponding perspective,
and achieve desirable completion results.

Our algorithm consists of three steps: motion field comple-
tion, background completion, and illumination adjustment. For
the missing part in video volume, we first present an effective
motion field completion approach to estimate the motion field
in the hole, making the completed motion field consistent
with that around the hole’s boundary. After that, we complete
the missing parts with the guidance of the completed motion
field. We consider the completion process as a MRF-based
optimization problem, and find the best assignment of pixels
from other neighboring frames to fill the missing part. Finally,
as filled pixels may come from different neighboring frames,
we use adaptive illumination transfer method to address the
illumination inconsistency occurred in the filled region.

In summary, our approach has the following two main
contributions.

(1) Present a system to complete video background with
large-scale compound camera movement and severe depth
discontinuity, which is demonstrated difficult for previous
methods based on plane-wise perspective transformation.

(2) Propose an illumination adjusting method to effectively
eliminate the illumination gaps existing within the completed
holes.

We present a variety of results in this paper to show that
our system can complete the static background well in many
aforementioned complex and challenging situations.

II. RELATED WORKS

Since Bertalmio et al. [5] extended their image inpainting
algorithm to video, many video completion methods have been
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proposed, see [1], [2] for a survey. Some of them have implicit
constraint for camera movement ( [1], [6]–[10]), while other
methods are not limited to such conditions and can be applied
to more video types ( [2]–[4], [11]–[16]).

The first category mainly aims at completing both static
background and occluded moving objects. The input videos are
always captured by static camera or camera moving parallel
to the scene. Wexler et al. [6] formulated the completion as
a non-parametric optimization and used an iterative method
to fill the hole. Jia et al. [7] used tracking technique to re-
strict the searching space, and applies a fragment-by-fragment
completion method. These two methods only works well for
objects with repetition pattern such as periodically walking
people. Patwardhan et al. [9] built image mosaics to produce
temporally consistent results and reduced the search space.
As they used block matching to align sequential frames, and
considered the median shift of all the blocks as the camera
shift, this work was limited to the constrained camera motion
such as moving parallel to the image plane. Granados et
al. [1] proposed a non-parametric algorithm that can deal
with complex scenes containing dynamic background and
non-periodical moving objects. Their completion process was
performed by searching for an optimal pattern of pixel offsets
from missing region to the accessible regions. The proposed
energy function implicitly assumed that the repetitive pieces
could be found in the video, thus it is mainly appropriate for
statics cameras.

Different from the above methods, other methods are not
limited to static or parallel-to-scene moving cameras, and can
be applied to more complex video data. These methods can
be roughly classified into two categories: methods based on
motion field [4], [11]–[13], and methods based on perspective
transformation [2], [3], [14]–[17].

Among the motion based methods, [4], [13] aim at complet-
ing both the occluded moving objects and the background,
while [11] only aims at completing background. Shiratori
et al. [4] completed video using motion field transferring.
They calculated the Lucas-Kanade optical flow [18] for the
unoccluded video regions, and synthesized the missing motion
field using the available optical flow. Since only the nearest
available pixels were used to fill the hole, the final result some-
times has misalignment and discontinuity artifacts. Moreover,
this method did not handle illumination consistency during
completion, so the illumination in the filled regions might be
inconsistent. Tang et al. [11] proposed an motion-field based
algorithm to complete vintage films via maintaining spatio-
temporal continuity. They used patch averaging as the final
result, leading to obvious blurring artifacts for video with rich
texture detail. In [13], objects in the video were first separated,
and holes are then completed according to corresponding
regions. This approach needs complex parameter adjustment
to obtain desirable results.

Perspective transformation is also a useful video completion
technique. Some of the methods [14]–[16] in this category
aimed at completing both static background and moving
foreground at the same time. Jia et al. [14] separated the back-
ground region of some key frames into layers, and propagated
the segmentation results throughout the video using mean-shift

tracking. Homography blending was applied between specified
homography matrices of all layers in order to avoid artifacts
near the layers’ boundaries. In [15], the authors proposed a
method to deal with the illumination variation in the input
video. Reference mosaics for each layer were constructed, and
the intrinsic image separation of these mosaics was projected
onto original frames. Because of the essential drawback in
perspective-based registration (the scene has to be composed
of a few major planes), this method sometimes cannot seg-
ment the video accurately when the background has depth
discontinuity. Besides, their illumination completion method
only applied the image repairing method [14] to illumination
content, without considering the texture information.

Method proposed by Newson et al. [2] aims mainly at
completing dynamic video texture. This method extended
Patch-Match algorithm [19] to 3D domain to search ANN
(approximate nearest neighbor) for spatio-temporal patches,
and used a novel similarity metric accounting for texture
features. For the moving camera cases, they first warped each
frame to a reference frame with only one homography per
frame and then performed the completion.

Granados et al. [3] proposed a method to inpaint the static
background of videos, which is the most related method
to ours. This method applied optimization in 3D space to
segment all the frames into subregions (layers) with differ-
ent homography. Then the video was completed frame-by-
frame by picking several candidates for each missing pixel
through subregion-level perspective transformation. A MRF
optimization was performed to ensure the coherence within
single image. Finally, they applied a spatio-temporal gradient
fusion to handle the illumination inconsistency. Herling et al.
[17] proposed a real-time video inpainting method which dras-
tically reduced the time consumption of completion. However,
to reduce the computation cost, they completed each frame just
based on itself and the preceding frame, thus this method is
not applicable for more complex cases.

As these perspective transformation based methods [2], [3],
[14]–[17] rely on the planar assumption of homography, they
usually work well for background consists of several major
planes. When the depth of the scene changes abruptly and
severely, the background cannot be approximated using a few
planes, and unreasonable division of the background would
lead to artifacts in the results. Another problem occurs during
the feature extraction processing. It is difficult to extract fea-
ture points in some textureless regions because of rare texture
and uniform appearance, such as the sky. These methods are
thus seriously constrained under certain circumstances.

Recently, Ilan et al. [20] utilized data-driven strategy to
obtain plausible results, which required large amount of addi-
tional data.

III. PROBLEM FORMULATION AND SYSTEM OVERVIEW

The content of video can be divided into foreground re-
gion and background region. Typically, objects are treated as
foreground if they have intrinsic movement, such as walk-
ing people and running vehicles. Other objects are treated
as background, whose movement is merely caused by the
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(a) (b) (c) (d) (e)

Fig. 1: System overview. (a) The input: original video and specified masks. (b) Motion field completion. The original motion
field and the completed result are visualized. (c) In each frame, the missing pixels search for their possible candidates in the
neighboring frames. (d) The label distribution of our MRF-based optimization and the background completion result for one
frame. (e) The final output frame after performing the illumination adjustment strategy.

camera’s motion. One exception is object like waterfall or river
with dynamic video texture. We also treat it as background
since it is usually not the dominant object of the video.
When foreground objects’ movement is not parallel to the
background, they will occlude the background, sometimes
even occlude each other.

In this paper, we are primarily concerned about the static
background completion (without dynamic video texture). In
other words, we want to process the following two situations:
(A) One or several foreground objects occlude the background,
and we remove some or all of these foreground objects; (B)
Foreground objects occlude each other, and we maintain the
front one of these objects while removing others to reveal the
background.

The input of our algorithm is a video clip V (x, y, t) which
has one or more moving foreground objects. We first make
masks for the objects to be removed. We use rotoscoping
technology such as [21], [22] to track and extract these objects.
Removing these objects leaves blank holes Ω in the video
volume, and the pixels in Ω are the missing pixels. The region
in V (x, y, t) that used to complete Ω as prior information is
denoted as Φ (reference regions). Most of the time, Φ = V −Ω.
However, when some parts of the video are not appropriate
to be used as prior information for background completion,
they should not be included in Φ. For example, in situation
(B) when foreground objects occlude each other, we want to
maintain the foremost one and remove others, then the front
one is marked and excluded from Φ. Our goal is to fill the
holes Ω using pixels in Φ to get a completed video with spatio-
temporally coherent appearance.

Fig.1 shows the pipeline of our system. We first compute
the motion field of Φ using optical flow. Based on it, we
use a two-step iterative method to complete the motion field
in Ω, ensuring that the complete motion field is reasonable
in the interior and consistent with hole exterior (Section 4).
Then, with the guidance of the motion field, for the missing
part in each frame, we find corresponding part in Φ among
neighboring frames, and apply a pixel-assignment process
based on MRF to determine the final value for each missing
pixel (Section 5). Finally, to handle illumination gaps in the
filled region, we present an illumination adjustment strategy
to obtain results with illumination consistence (Section 6).

IV. MOTION FIELD COMPLETION

Motion field completion has broad applications in video
manipulation, such as [23], [24]. In our work, completing the
missing motion field in Ω depends on the known parts. We
begin with calculating the motion field of Φ using optical flow.
The dense optical flow is computed by applying the method in
[25]. Compared with other methods ( [18], [26] ), the method
[25] suits our work better, because it can produce more reliable
optical flow around the foreground objects’ boundaries.

For each pixel p in Ω, in step I we first estimate its initial
optical flow by adopting progressive motion propagation. The
completion of the motion field starts from the hole boundary,
and progressively advances inwards. Then in step II, we
refine the results obtained in the first step by motion field
summarization.

Step I: To propagate the motion field inwards and create
a reasonable initialization for subsequent optimization, we
minimize the following energy function:∑

Q⊂Ω∪∂Ω

min
P⊂Φ

D(P,Q), (1)

where P and Q are spatio-temporal cubic patches. We call
Q the target cuboid and P the source cuboid. Q denotes any
cuboid which has at least one missing pixel, thus it belongs
to Ω ∪ ∂Ω, where ∂Ω denotes the non-hole pixels near the
boundary of Ω. We utilize angular difference as [4] to measure
the distance D(P,Q) between two spatio-temporal cuboids in
the motion field. Note that we use the homogeneous form of
optical flow to account for both direction and magnitude. The
typical size of the cuboid is 7× 7× 5. Each target cuboid Q
overlaps with neighboring cuboids, which helps to make the
completed result spatio-temporally coherent.

As no data exists in missing hole, to optimize Eq.1, we
apply a progressive strategy which approaches the greedy
patch comparison in western order. We set a threshold that
when 60% or more of the pixels in a target cuboid are known,
by then we search for its most similar source cuboid. At this
time, D(P,Q) only measures the distance for known pixels in
both cuboids. In our experiments, we find 60% is a appropriate
threshold. If the threshold too high, the progressive motion
propagation would not be efficient, since only a few patches
could be matched each time. If the threshold too low, the
propagation result would be inaccurate and unreliable.
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We constrain the searching process in a certain region Φ′ ∈
Φ near the hole, since the motion field in the hole is most
relevant to that around the hole’s boundary. Φ′ is obtained by
dilating the mask of the hole. Once the number of pixels in
the dilated area reaches twice of that in the hole area, we stop.
If the hole area is extremely large (more than 1/4 of the pixels
in the frame are missing), we stop when the dilated area and
hole area have the same number of pixels. Such constraint can
significantly increase efficiency.

The source cuboid we have found is then copied to the
location of the target cuboid. As the source cuboid is complete,
it is able to fill the missing pixels in the target cuboid with
optical flows at the corresponding positions. Once the missing
pixels are assigned with optical flow, they are then treated
as known pixels in the following propagation process. Eq.1
ensures that the motion field propagates smoothly from Φ to
Ω according to the motion field distribution of Φ. With this
method, each missing pixel will be filled.

Eq.1 can be further optimized by an iterative method similar
to [6]. Each target cuboid Q will be matched an approximate n-
earest neighbor cuboid P from Φ′. As each cuboid Q overlaps
with neighboring cuboids, a single pixel in Q may be occupied
by many cuboids containing it. Each cuboid overlapping this
pixel would contribute one possible value to it. Intuitively, this
pixel should take all these possible values into consideration.
The final optical flow for such missing pixel is calculated as
follows:

mp =
Σiωimi

p

Σiωi
, (2)

which means that the final optical flow vector is the weight-
ed average of all contributing flows mi

p at p by the oc-
cupied cuboids Qi. The weight ωi = siλi, where si =
exp(−D(Qi, P i)/2σ2

d) measures the similarity between target
cuboid Qi and source cuboid P i (σd is the 75-percentile of
D(Qi, P i) for all i). λi defines the closeness level between
the central pixel of cuboid Qi to boundary of the hole. Target
cuboids closer to the boundary should have higher confidence
as they are more related to the known pixels. To accomplish
this, we first calculate the distance L(Qi) between the central
pixel of Qi and the hole boundary, and then determine this
weight as λi = exp(−L(Qi)/2σ2

l ), where σl is also the 75-
percentile of L(Qi) for all i.

Step II: In the second pass, we further refine the results
received in the first step using motion field summarizing
method. Inspired by data summarizing method [27], [28], we
use the results of step I as the initial value, and apply the
following bidirectional similarity to refine the motion field in
Ω:

β
1

NΩ

∑
P⊂Ω

min
Q⊂Φ′

D(P,Q)+

(1− β)
1

NΦ′

∑
Q⊂Φ′

min
P⊂Ω

D(Q,P ),
(3)

where Φ′ is the regions near the hole in Φ as mentioned above.
NΦ′ and NΩ denote the number of cuboids in Φ′ and Ω. Eq.3
means that for each cuboid Q ⊂ Ω, we search for its most
similar cuboid P ⊂ Φ′, measure their distance D(P,Q), and

vice-versa. Using above similarity measure, Ω will contain as
much as possible optical flow from Φ′, and introduce as few
as possible new optical flow artifacts that were not in the Φ′.
Thus, the motion field in Φ′ can be propagated into Ω more
smoothly and accurately. In all the experiments, we set β to
0.8.

Similar to [27], Eq.3 can be optimized using an iterative
updating rule. We need to iteratively search and vote the
nearest cuboid to minimize Eq.3, and obtain progressively
improved motion field for Ω. Please refer to [27] for more
technical details.

To accelerate the convergence of iterative process, we build
a space-time Gaussian pyramid for the motion field of the
video, and adopt a multi-scale completion scheme. The com-
pletion begins from the level with coarsest scale. The result of
a coarser level is propagated to a finer level as a new initiation
for iteration optimization. In this case, Step I (Eq.1) is only
performed on the coarsest level to provide initialization for
Step II (Eq.3). In our experiments, we build a pyramid with 3-
5 levels. Iteration on each level is terminated if (1) the number
of iteration times reaches a pre-defined parameter (specified in
Tab.II), or (2) the difference between two passes of iteration
is less than 15. In each iteration, we use the ANN method
[29] to accelerate the nearest cuboid search, which constructs
a kd-tree to contain the source cuboids. Such method greatly
improves search efficiency.

Our motion completion method is based on the observation
that for most videos, the movement of static background is on-
ly caused by camera movement, thus its movement is uniform,
and the completed motion field should be smooth. However,
when the background consists of parts with definitely different
movements, users can apply interactive rotoscoping [21] to
segment the background into different regions according to
respective movements. Different parts of Ω can find corre-
sponding regions in Φ for motion field completion. The manual
efforts for such interaction is acceptable. The average time to
segment one frame is about half a minute. Note that such
extra background segmentation is only necessary for limited
video types, and none of the sequences shown in Section VII
requires such manual segmentation. Fig.2 shows some motion
field completion results. The motion field propagates smoothly
from the hole’s exterior to interior, and the completed part is
consistent with the surroundings. Our motion field completion
algorithm is summarized in algorithm 1.

V. MOTION-GUIDED BACKGROUND COMPLETION

Our method is based on the assumption that the missing
region in one frame is visible in other frames. With the com-
pleted motion field, we can use each of the neighboring frames
to fill partial or all of the missing holes in the target frame,
getting a local solution for the target frame. However, the local
solution usually fills certain parts of the hole; furthermore,
these naive local solutions may exhibit some distortion due
to inaccurate optical flow correspondence. Thus, to receive a
complete and plausible solution for the target hole, we need
to design a strategy to appropriately rearrange these local
solutions. Simple arrangement with nearest-prior strategy as
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Fig. 2: Motion field completion. First row: one frame from the input videos. Second row: original motion field calculated
by [25]. Third row: completed motion field. The motion field is visualized using the visualization tool presented at
http://hci.iwr.uni-heidelberg.de/Static/correspondenceVisualization/

Algorithm 1 MotionCompletion()

Input: Video V , holes Ω, reference regions Φ
Output: Vm: motion field of V .

1: Compute the motion field of Φ.
2: Construct pyramids Ωl and Φl (l = l1, ..., lco) (lco is the

coarsest scale).
3: Complete the motion field of Ωlco with that of Φlco by

minimizing Eq.1.
4: Ωlco−1 ← Ωlco

5: for l = lco−1 to l1 do
6: Complete the motion field of Ωl with that of Φl by

minimizing Eq.3.
7: if l 6= l1 then
8: Propagate Ωl to finer level.
9: end if

10: end for

in [4] always leads to misalignment in the result, as illustrated
in Fig.3(a). Instead, we establish a MRF-based optimization
method to compute a global solution based on these local
solutions, and assign optimal pixels to the missing region to
make the completed result spatio-temporally coherent.

To compute the local solutions, we copy corresponding
information from neighboring frames into target frame. We
use the motion completion method introduced in Section
4 to compute both forward and backward motion field for
the video. Suppose ft is the target frame to be completed,
ft+i (i ∈ [−r, r]) is a neighboring frame of ft, and r is a user-
specified parameter to define the radius of neighboring frame
interval. According to motion field correspondence, pixel in
ft can find its corresponding pixel in ft+i (suppose i > 0)
through forward optical flow. Similarly, pixel in ft+i can find
its corresponding pixel in ft through backward optical flow.
We obtain two local solutions from each neighboring frame
ft+i for ft though both forward and backward motion field in
this way, which is showed in Fig.4. For all neighboring frames
ft+i (i ∈ [−r, r]), we receive in total 4r local solutions.

(a) (b)

Fig. 3: (a) Completion results using our completed motion
field combined with the color propagation method (nearest-
prior strategy) of [4]. Note that without pixels assignment
optimization, artifacts exist on the wall and the window. (b)
Completion results using motion-guided pixels assignment
optimization.

When applying pixel-to-pixel copy strategy to images with
integer coordinates, the precision loss of optical flow corre-
spondence may lead to unfilled seams. As 2D patch enjoys the
advantage to maintain the local structures and features, instead
of pixel-to-pixel copy strategy, we apply patch-by-patch copy
strategy to avoid unfilled seams and fluctuation in structures.
We first decompose ft into overlapping 2D patches. For each
target patch T in ft containing missing pixels, we find its
corresponding 2D patch S in ft+i, according to the patch
center correspondence in terms of optical flow correspondence.
Then we copy the color of S to T . The final color value for
pixel p in the local solution is the weighted average of all
overlaps. The weight ωk is a Gaussian term with a large σ
parameter to avoid blurring artifacts. It means that we give
dominant weight to the central pixels and smaller weights to
other pixels in the patches. In our experiments, we set the size
of S and T as 5× 5.

With the computed local solutions, we develop an optimiz-
ing strategy to select the most proper pixels from these local
solutions and get a globally optimal result for target frame
ft. We formulate this problem as a labeling problem in a
MRF framework. MRF model builds up an undirected graph
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Fig. 4: (a) By using one neighboring frame and forward optical
flow, we obtain a local solution for the target frame. (b) Using
the same neighboring frame and the backward optical flow, we
obtain another local solution.

to optimally choose a label for each node and obtains minimal
global cost [30]. For each missing pixel p in ft, we choose
an optimal pixel with the same space coordinates as p in the
local solution set {f t+i

t }, and assign it as the final color of p.
First we pick n (n ≤ 4r) candidates {p1, p2, ..., pn} with the
same space coordinates as p from {f t+i

t } in a symmetrical
frame-pair order, giving priority to the candidates in nearer
neighboring frames. Note that in some local solutions, there
may be no corresponding pixel at the position of p, since p
may be invisible in the neighboring frame. Once the number
of candidates reaches n, we stop further candidate selection
for p. In our experiments, n is set to 8.

Each node in the MRF corresponds to a pixel in or
surrounding the hole in the target frame ft. We add edges
between any nodes with their 4-neighborhood nodes. Our goal
is to assign a label to each missing pixel, indicating its final
choice from all its candidates. Suppose that function L(p)
maps p to its final selected candidate’s label, and the range
of L(p) is {1, 2, ..., n}. Then in the global solution, the final
color of p is set to the color of pL(p). Let pixel q be the 4-
connected neighboring pixel of p, we minimize the following
cost function:∑

p

Ep(L(p)) + α
∑
p,q

Ep,q(L(p), L(q)) (4)

The parameter α balances the contribution of two terms, and
we set α from 6 to 10 in our experiments according to the
different video content. Typically, videos with more detailed
texture have larger α value.

We start by setting each pixel p an initial value I(p), which
is computed as the weighted average of all the corresponding
pixels at the position of p from local solutions. The weight is
based on the accuracy of optical flow correspondence between
target frame and its neighboring frame. By dilating the mask
of the hole, we select some area EV (ft) in the target frame
(the yellow region in Fig.5), which is the surrounding region
around the missing hole, as the sample for measuring the
accuracy of correspondence. For each pixel p in EV (ft), we
calculate the color difference between p and its corresponding
pixel p′ (according to optical flow alignment) in frame ft+i.

Fig. 5: The white region is the hole left by the removed person.
Yellow region is the regions we use for evaluating the accuracy
of frame alignment as EV (ft).

The similarity ωi between frame ft and ft+i is defined as :

ωi = exp(−
∑

p∈EV (ft)

‖ft(p)− ft+i(p
′)‖2) (5)

The initial color of missing pixel p in I(p) is then defined
as:

I(p) =

∑
i∈[−r,r] ωift+i(p

′)∑
i∈[−r,r] ωi

(6)

This initialization makes the following optimization process
prefer the candidate coming from better-aligned frames.

Based on this initialization, the data term Ep(L(p)) mea-
sures the cost of choosing pL(p) for p. We define Ep(L(p))
as the color difference between the chosen candidate pL(p) in
each iteration and I(p):

Ep(L(p)) = ‖pL(p) − I(p)‖2 (7)

The consistency term Ep,q(L(p), L(q)) requires adjacent
pixels to have coherent appearance and structure. Intuitively,
pixels coming from the same frame are more coherent. As a
result, we devised the following penalty term:

Ep,q(L(p), L(q)) =

(‖pL(p) − pL(q)‖2 + ‖qL(p) − qL(q)‖2)+

λ(‖OpL(p) − OpL(q)‖2 + ‖OqL(p) − OqL(q)‖2)

(8)

This term punishes the color and gradient difference for
adjacent pixels in holes of ft when choosing candidates
from different neighboring frames. As lines or other structural
features always cause strong response in gradient field, in Eq.8,
we maintain the gradient information of the structure. The
balance parameter λ is set as 0.5 in our experiments.

We use graph cuts [31] to optimize the MRF energy function
Eq.4, similar to [32] and [3]. Note that the consistency term
Eq.8 does not integrate the temporal neighbors explicitly.
However, the temporal coherence can be guaranteed to some
extent as we apply motion field to find corresponding locations
for the missing pixels. Motion field has been used for video
completion as an intrinsic presentation of a video to maintain
temporal consistency in previous works such as [4], [12]. With
the motion field used in building temporal correspondence, our
method can complete the missing pixels better.

Similar to the mean-shift approach in [6], our pixels assign-
ment optimization also tries to accommodate potential errors
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Fig. 6: First column: results without illumination adjustment. Second column: results using gradient fusion. Third column:
results with our illumination adjustment method.

of ANN, but in a different way. One advantage is, results of
[6] sometimes exhibit blurring artifacts, because they perform
averaging operation to get the final appearance, while our
approach stitches pixels from different frames, thus maintains
texture details better.

When we perform pixels assignment optimization in a single
pass, sometimes the video may exhibit a small amount of ghost
shadow. This happens because the final assigned pixel may
come from any neighboring frame ft+i (i ∈ [−r, r]). When the
neighboring frame threshold r is large, corresponding pixels in
two sequential frames may be assigned with pixels from two
distant frames. For example, pixel pt in frame ft may come
from frame ft−r, while pixel pt+1, which is the corresponding
pixel of pt in frame ft+1, may come from frame ft+1+r.

To alleviate this problem, we repeat the background com-
pletion processing 2-4 times. Each time we complete every
target frame with fewer neighboring frames (less r), as well
as the number of candidates n. That means we rely more
on the smooth motion field and less on the MRF-based
optimization for individual frames. Corresponding pixels in
sequential frames would be assigned with pixels from closer
frames. Especially, in the last pass, we set the parameter r
to 1, only considering the nearest neighbor frames on both
sides of each target frame. The final value of each filled pixel
in ft comes either from ft−1 or from ft+1. In this way, the
relationship between adjacent frames becomes stronger, and
the temporal coherence of the completed result is consolidated.
Please see the accompanying video. This process is described
in Algorithm 2.

VI. ILLUMINATION ADJUSTMENT

The video completion process mentioned above picks fi-
nal pixels from different frames to complete the missing
background, without considering the variance of illumination
among these frames in a global way. For outdoor scenes
with varying illumination and camera rotation movement, the
illumination of the completed background may be non-uniform
and exhibits illumination differences, as illustrated in the first
column of Fig.6.

The illumination gaps may exist not only around the bound-
aries of the hole, but also in the interior of the completed
regions, which may be more obvious. This is because during

Algorithm 2 VideoCompletion()

Input: Video V with n frames f1...fend
Holes Ω
r: search radius of the neighboring frames
rs: step size of r

Output: Completed video Vc
1: Initialization: Vr ← V -Ω, r ← 10 (initial value of r)
2: MotionCompletion (Vr)
3: repeat
4: for t = 1 to end do
5: for all p ∈ Ω in ft ∈ Vr do
6: Find corresponding pixels within neighboring

frames ft+i (−r ≤ i ≤ r) guided by motion field
7: Assign one pixel for p by minimizing Eq.4
8: end for
9: end for

10: Vr−rs ← Vr
11: r ← r − rs
12: until r = 1
13: for each key frame do
14: Adjust illumination of the key frame
15: end for
16: Propagate the adjusted illumination to the non-key frames

17: Vc ← Vr

MRF-based optimization, we stitch together pixels from dif-
ferent frames to maintain texture detail. The location where
pixels with different labels meet are very likely to generate
illumination gaps. Pixels near the hole center always come
from frames far apart from each other, so they may have quite
different illumination information.

To solve this similar problem, [14] applied the gradient
fusion method [33]. However, this method cannot solve our
problem, because it only modifies the gradient at the boundary
of the hole and fails to handle nonuniform inner illumination.
The method [3] extended [33] and presented a spatial-temporal
fusion. This method tends to smooth the illumination gaps
rather than remove them, as illustrated in the middle row of
Fig.6.

In an alternative way, we propose a novel method to address
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the illumination inconsistency problem. The basic idea of our
method is to transfer the illumination from Φ to the filled
regions Ω, so that Ω has similar illumination condition as that
of Φ. We first pick one key frame from every five frames
in the completed video, and adjust the illumination of these
key frames using illumination transferring method. After that,
based on the motion field correspondence, we propagate the
illumination adjustment results from key frames to other non-
key frames and obtain final illumination corrected results for
Ω.

Illumination adjustment strategy for key frames is inspired
by [34]. It consists of three main steps: (1) we first decompose
the key frame into fragments using mean-shift method [35].
(2) For each fragment T in Ω, we find a fragment S in Φ
with similar texture based on the texture feature matching
[36]. (3) Finally, we transfer the illumination from S to T
using adaptive illumination transfer method [37], obtaining
the illumination recovered result for a certain key frame. We
use Gabor filter [38] to extract texture features from original
frames. Note that regions near the hole usually have similar
texture as the hole region, so we restrict the texture matching
for T in a small part of Φ near the hole. To make the transition
between fragments more smooth and natural, we dilate each
fragment to generate some overlaps in between, and perform
crossfading in the overlapped regions. The pixel’s intensity
value in the overlapped region of two fragments T1 and T2 is
determined as ρ× lumT1 +(1−ρ)× lumT2 , where lumT1 and
lumT2

are illumination values from T1 and T2 at this pixel,
and ρ decreases linearly from 1 on T1 side to 0 on T2 side.

After performing illumination adjustment for the key
frames, we adopt the following strategy to propagate the
adjusted illumination from a key frame to its neighboring
non-key frame. Suppose that in a key frame ft, fragments
St ∈ Φ and Tt ∈ Ω. St is the most similar fragment
(in texture similarity) of Tt. According to the motion field
correspondence, when St moves to St+i in ft+i, and Tt and
Tt+i, then we transfer the illumination from St+i to Tt+i. If
St+i moves out the frame, or contains more than 20% missing
pixels, we search for a new similar fragment in ft+i for Tt+i,
and transfer the illumination from the new fragment to Tt+i.

To make the illumination change naturally and coherently
through the whole video, we introduce a bidirectional illumi-
nation propagation method. For two key frames ft1 and ft2
(assume ft1 comes before ft2 in video playing order), with the
forward optical flow from ft1 to ft2, and the inverse optical
flow from ft2 to ft1, we undertake the forward and backward
illumination propagation as mentioned above, respectively.
For any intermediate frame between ft1 and ft2, its final
illumination result is the weighted average of both the forward
and backward illumination propagation results, and the nearer
key frame has larger weight. Using such illumination propaga-
tion method, we can obtain temporally coherent illumination
results. The bottom row in Fig.6 shows the results of our
illumination adjustment. Bidirectional process technique is
also used in other fields such as video watercolorization [39].

Our video completion method is summarized in algorithm
2.

VII. EXPERIMENTAL RESULTS AND DISCUSSION

We apply our system on a variety of videos with different
types of scenes to validate the proposed algorithms. Some of
these videos are captured by Canon EOS 60D (EF-S 18-135
IS) camera. All the results are obtained from single PC, with
64-bit Window7 system, Intel Xeon 3.3GHz CPU and 16G
RAM.

The running time is determined by the size of the video
as well as the size of holes Ω. Optical flow computation
is the most time-consuming step, because the motion field
method [25] calculates relatively accurate dense optical flow
for each frame using iterative estimation. Although motion
field completion has two steps and works in 3D video volume,
it is not so time-consuming since we constrain our search space
near the hole. Running times for background completion and
illumination adjustment are also acceptable. In the MRF-based
optimization, only pixels in and around the hole are treated as
nodes in the graph, and each missing pixel has fixed number
of labels. During illumination adjustment, most searching and
transferring operations are only performed on key frames. The
total running time is about 1.5 to 6 hours using single PC,
excluding the time for manual interaction (30 seconds for each
frame typically).

We notice that most video completion methods are also
time-consuming. The running time of our method and them
can be found in Table I. Note that besides [2], [4], running
time for [3] is stated in their paper as ∼60 mins to ∼240
mins computed in parallel on a 64-core server, which varies
as temporal window size varies between 50 and 100 frames(
[3], Sec.4).

Some parameters are discussed below. During motion field
completion, we build Gaussian space-time pyramid to ac-
celerate the convergence of iteration. We denotes the total
number of levels in the pyramid as npyr, and number of
iterations on the coarsest level lco as itrco. For the l-th level
(l 6= lco), we usually perform itrco − itrbias × |l − lco| times
of iteration, where itrbias is the difference of iterative number
between two sequential levels. Another important parameter
is the α in Eq.4, which balances the contribution of data
term and consistency term. We provide the values for all these
parameters in Table II.

Experiment 1 (Fig.7): We compare our algorithm with [4]
and demonstrate the importance of each step of our algorithm.
The video size is 714 × 372 × 122, and we remove the
walking person ranging from the 1st frame to the 122nd frame.
The camera has translation and rotation movement (nearly 90
degree), leading to obvious illumination change. Results of [4]
are illustrated in the second row of Fig.7, which use Lucas-
Kanade optical flow [18] and single-pass progressive comple-
tion to estimate the motion field. Illumination inconsistency
artifacts (illumination gaps) are not addressed, and the texture
structure is not well preserved. In the third row, we show
the results produced by the combination of our motion field
completion method and color propagation in [4]. Misalignment
is alleviated, showing the merit of our motion field completion
method. In the fourth row, we show the results using our
motion completion method and MRF-based pixels assignment
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TABLE I: Running time for each experiment
For each experiment, we give the time for motion field calculation using [25] (Time 1), motion field completion (Time 2),

background completion (Time 3), illumination adjustment (Time 4), total time and accessible running rime for [2], [4].

Exp Video size Hole size(pixels) Time 1 Time 2 Time 3 Time 4 Total time Time for [4] Time for [2]

Exp.1 714× 372× 122 3,636,030 144min 67min 55min 51min 317min 96min —
Exp.2 634× 334× 46 159,282 47min 31min 23min 20min 121min 77min —
Exp.3 960× 530× 161 3,599,330 154min 62min 81min 61min 358min — —
Exp.4 960× 540× 96 4,709,410 136min 49min 62min 40min 287min — 300min
Exp.5 960× 720× 93 2,348,832 147min 42min 52min 33min 174min — 291min
Exp.6 960× 520× 27 6,006 37min 29min 19min 12min 97min — —
Exp.7 960× 516× 54 3,387,520 60min 45min 37min 24min 166min — —
Exp.8 960× 540× 72 2,887,760 85min 46min 44min 35min 210min — —

Fig. 7: Experiment 1 (Comparison with [4]). First row: three frames from the input video. Second row: results of [4]. Third
row: results using our motion field completion method and color propagation method in [4]. Fourth row: results using our
motion field completion method and MRF-based pixels assignment optimization. Fifth row: final results of our method.

optimization. Color and structure inconsistency in each frame
is removed. Although our method does not rely on perspective
transform alignment, no perspective distortion is generated
when completing the building consisting of several planes. In
the bottom row, we show our final results with illumination
adjustment. The illumination gaps are effectively removed.

Experiment 2 (Fig.8): We perform another comparison with
[4]. The size of this video is 634× 334× 46, and we remove
the telegraph pole ranging from the 1st frame to the 46th

frame. The facade of background building exhibits strong
structure details. The camera’s nonlinear trajectory contains
translation and rotation movement. Our motion-guided pixels
arrangement process picks optimal pixels, and effectively
maintains the structures of the background, while the color
propagation method in [4] leads to serious accumulation error,

TABLE II: Parameters in our experiments

Experiments npyr itrco itrbias alpha

Exp.1 3 17 7 9.5
Exp.2 3 17 7 10
Exp.3 4 20 6 6
Exp.4 5 22 5 6
Exp.5 4 20 6 8
Exp.6 3 17 7 6
Exp.7 3 17 7 8
Exp.8 3 17 7 6

and brings about structure misalignment artifacts.
Experiment 3 (Fig.9): We run our algorithm on one video

(960 × 530 × 161) captured at a fixed point with 90-degree
rotation only, and compare with [3]. We aim at removing the
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Fig. 8: Experiment 2 (Comparison with [4]). First column: original frames. Second column: results of [4]. Third column:
close-up comparison. Fourth column: our results.

(a) (b) (c) (d)

Fig. 9: Experiment 3 (Comparison with [3]). (a) Original input frames. (b) The divided planes and results of [3]. (c) Close-up
comparisons. (d) Our results.

walking person ranging from the 2nd frame to the 160th frame.
The background of this video contains much depth disconti-
nuity, as it consists of different objects with different depth.
We implement the method [3] with careful parameter setting.
The automatic scene division of [3] is shown in Fig.9(b). As
some small objects with various depth, such as the front trees,
cannot be effectively divided, the results exhibit some artifacts
near the boundaries. Moreover, temporal inconsistency occurs
in their results (please refer to the accompanying demo). In
contrast, our method relies on pixel-by-pixel correspondence
without the need to divide the background into planes. The
motion field guided method ensures temporal coherence in a
more valid way, which leads to better output.

Experiment 4 (Fig.10): We present another comparison
result with [3], as well as the latest video completion method
[2], on a video (960×540×96) provided by [3] on their web-
site (http://gvv.mpi-inf.mpg.de/projects/vidbginp/index.html).
We focus on removing the jumping man ranging from the
6th frame to the 92nd frame. Results of [3] could be obtained
on the same website. Spatio-temporal inconsistency occurs in

the result of [3], and blurring artifacts are also generated.
One main reason is that, [3] relies on plane-wise perspective
transformation, so it is feasible only when the scene consists of
several simple planes. When the depth of the scene exhibits
abrupt discontinuity, it is difficult to divide the background
into reasonable planes. For example, they cannot separate the
wooden fences reasonably. Our method does not suffer from
such a problem. The optical flow presents a pixel-to-pixel
correspondence, and we get much better result than [3].

Methods in [2] works well for dynamic video texture, but
cannot get satisfied result when the camera has large-scale
rotation movement. Following the instruction in [2], we first
transform all the frames in the video to the perspective of the
middle frame with one homography for each frame, and run
the program they released on their project page. Their results,
as shown in the second row of Fig.10, also have obvious
blurring and spatio-temporal inconsistency artifacts.

Experiment 5 (Fig.11 and Fig.12): We make one
more comparison with [3] and [2] on an known video
(960 × 720 × 93) provided by [3] on their website.
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Fig. 10: Experiment 4. First row: comparison with [3]. Second row: comparison of [2]. From left to right, original frame,
results of [3] (first row) and [2] (second row), our results.

Fig. 11: Experiment 5. First row: comparison with [3] in two frames. Second row: comparison with [2] in two frames. From
left to right, each frame consists of the original frame, results of [3] (first row) and [2] (second row), close-up comparisons
and our results.

In this video, we remove the man walking behind the
woman, ranging from the 44th frame to the 93rd frame.
As shown in the first row of Fig.11, [3] cannot recover
the shape of the shadow and flower structure accurately,
leading to jittering artifacts when the man occludes them.
In the second row, we compare with the result of [2]
(http://perso.telecom-paristech.fr/∼gousseau/video inpainting/
Granados comparisons/index granados comparisons.html).
Their method does not suit well to videos with much
perspective variation, and also fails to avoid illumination
inconsistency in their result. Our method produces result with
better recovered structure of background, and the illumination
is better adjusted.

This outdoor video is captured by a camera with large-
scale compound movement, which leads to severe illumination
change. Method [3] alleviates the illumination discontinuity,
but illumination gaps are still visible in their result, as shown in
the second row of Fig.12. Our illumination adjustment strategy
does not rely on the original gradient, and gets uniform
illumination in the hole, as showed in the third row of Fig.12.

Experiment 6 (Fig.13): In this video clip (960×520×27),
a weasel and its shadow are removed which ranges from the
1st frame to the 27th frame. The resolution of this video is
low, and the sky and the wall in the background are hard
for feature extraction because of uniform texture. However,
our motion field guided method can effectively capture their
movement according to smoothness assumption.

Experiment 7 (Fig.14): In this video (960 × 516 × 54),
we remove three pedestrians (ranging from the 1st frame to
the 54th frame) and the car (ranging from the 4th frame to
the 41st frame), leaving only one pedestrian as reference.
Due to serious information loss caused by the front car, our
results exhibit a little flickering artifacts when we try to
keep global spatio-temporal coherence. However, the holes
are filled with little projective distortion, and the result is
acceptable. In the accompanying demo, we also demonstrate
the result of repeating background completion several times
with fewer neighboring frames each time, which alleviates the
ghost shadow artifacts.

Experiment 8 (Fig.15): We select a piece of video clip

http://perso.telecom-paristech.fr/~gousseau/video_inpainting/Granados_comparisons/index_granados_comparisons.html
http://perso.telecom-paristech.fr/~gousseau/video_inpainting/Granados_comparisons/index_granados_comparisons.html
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Fig. 12: Experiment 5 (Comparison with [3]). First row: original frames. Full image for the 205th frame, and close ups for
the 201st-208th frames. Second row: corresponding results of [3]. Third row: corresponding results of our method.

Fig. 13: Experiment 6: First row: original frames. Second row: our results. The weasel is removed. Video credits: ”Hotel
Transylvania” (2012) c©Columbia Pictures.

(960×540×57) from a movie, and try to remove one soldier
and one woman at the same time, both ranging from the
1st frame to the 57th frame. We treat the other standing
soldier as a part of the background. A little misalignment
on his body will lead to noticeable completion error. The
movement of the camera is not parallel to the scene. In the
result, no misalignment artifacts occur on the soldier, which
demonstrates that our algorithm is reliable in this example and
similar examples.

Limitation: Our algorithm works well in most situations
when the background has severe depth discontinuity, or the
camera has large-scale compound movement. However, when
the missing part of the video is extremely large and the
distortion in the video is severe, the motion field we complete
may not be so coherent with the non-hole region. In this case,
if there are strong features missing in the hole, such as an
obvious edge, our method may fail to recover the original
structure, as illustrated in Fig.16.

Another limitation is the running time of our algorithm.
It still fails to provide a fast feedback at present, which

will be considered as a future work. [17] is a good attempt
in this direction. They consider only temporal consistency
from one frame before, thus provide real-time completion
results. However, as they use limited data to fabricate the
missing region, they cannot get reasonable results in complex
situations, which need data from both preceding frames and
subsequent ones.

Finally, it is still difficult for our motion field completion
method to inpaint the motion field of articulated objects,
especially for objects moving non-periodically, which few
methods could handle well. We think this may be considered as
a limitation for all the motion field based completion methods.

VIII. CONCLUSION

In this paper, we have presented a novel video background
completion approach using motion-guided pixels assignment
optimization. Our method aims at completing video back-
ground with complicated camera movement. We first complete
the motion field of the holes by a two-step optimizing prop-
agation. Then, with the completed motion field as guidance,
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Fig. 14: Experiment 7: First row: original frames. Second row: our results. The car and three pedestrians are removed. Video
credits: ”21 Grams” (2003) c©Focus Features.

Fig. 15: Experiment 8: First row: original frames. Second row: our results. The walking woman and man are removed. Video
credits: ”The Tourist” (2010) c©Columbia Pictures.

we develop a MRF-based optimization to assign each missing
pixel a value from the neighboring frames. Finally, illumina-
tion adjustment is performed to remove the illumination incon-
sistency artifacts in the completed background. Many video
completion methods have been proposed, and every method
has its advantages and disadvantages. Only a few methods
have been proposed to complete video background with large-
scale compound camera motion. Among these methods, our
method works better at handling the background with much
depth discontinuity. Thus, we believe that our work can be
considered as a good complementary for the video completion
community.
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