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Video Retargeting Combining Warping and Summarizing
Optimization

Abstract We construct a unified interactive video re-

targeting system for video summarization, completion

and reshuffling. Our system combines the advantages

of both video warping and summarizing processing. We

first warping the video to present initial editing results,

then refine the results using patch-based summarizing

optimization, which mainly eliminates possible distor-

tion produced in the warping step. We develop a Mean

Value Coordinate (MVC) warping method due to its

simplicity and efficiency used in the initialization. For

refining processing, the summarization optimization is

built on a 3D bidirectional similarity measure between

the original and edited video, to preserve the coherence

and completeness of the final editing result. We fur-

ther improve the quality of summarization by applying

color histogram matching during the optimization, and

accelerate the summarization optimization using by a
constrained 3D Patch-Match algorithm. Experiment re-

sults show that the proposed video retargeting system

effectively supports video summarization, completion,

reshuffling while avoiding issues like texture broken,

video jittering, detail losing.

Keywords Video summarization · video retargeting ·
video completion · bidirectional similarity · texture

synthesis

1 Introduction

Motion picture and video are traditionally produced for

specific displaying platforms such as cinema or TV. In
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recent years, however, we witness an increasing demand

for displaying video content on devices with consider-

ably differing display formats. Video retargeting, which

focuses on presenting content-aware modification of the

video for a comfortable viewing experience, have been

intensively investigated, see [18] for a survey. The main

objectives of the existing media retargeting methods

can be described as following three aspects: preserving

the important content of the original media; limiting

visual artifacts in the resulting media; and preserving

internal structures of the original media. Although the

existing methods produce very promising results, how-

ever, there is still plenty of room to develop more so-

phisticated retargeting algorithms for improving both

results and efficiency, and many challenges are left for

video retargeting and summarization.

Several video retargeting approaches have been pro-

posed. Most previous methods work by extending per-

frame image-based techniques with some temporal con-

siderations. Cropping methods [4, 13, 3] may produce

virtual camera motions and artificial scene cuts, and

important objects might be discarded. Although con-

straining temporally-adjacent pixels are used in [30, 16,

32, 12], due to camera and dynamic motion, the ob-

jects may deform inconsistently between frames, which

will induce waving artifacts. Wang et al. [25] addressed

this temporal coherence problem by explicit detection

of camera and object motions, which only alleviates

the waving artifacts. As the spatial limitation affects

most video retargeting methods, by combining warp-

ing with temporally-based cropping, Wang et al. [26]

partially overcame this spatial limitation. However, this

approach still introduce such artifacts as virtual camer-

a motions, when salient objects exhibit drastic motion,

the retargeted results will not be natural.
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As an alternative, Simakov et al. [22] provided a vi-

sual data summarizing method using bidirectional sim-

ilarity measure, which comprises two terms (complete-

ness and coherence terms) between pairs of visual data

(images or videos) to quantitatively capture these two

requirements. Barnes et al. [2] later proposed a ran-

domized algorithm for quickly finding approximate n-

earest neighbor matches to accelerate the summariza-

tion computing. Different from other media retarget-

ing methods, Simakov et al. [22] exploited repetitive-

ness or redundancy of visual data in the summariza-

tion process, and can produce visually coherent small-

sized summaries which are difficult to obtain with cur-

rently existing methods. Furthermore, this method is a

powerful and versatile video editing tools, can be used

for image (video) retargeting (summarizing), collages,

reshuffling, and automatic cropping. However, effective

initialization and computational efficiency are bottle-

necks to make this method more practical.

In this paper, we present a powerful video retar-

geting approach combining the advantages of both the

content-aware warping and patch-based summarization.

Our method optimally combine them together to mini-

mize visual artifacts in the summarized media. We sum-

marize the video data using a 3D bidirectional simi-

larity measure, which is derived from the bidirection-

al similarity measure [22]. As the summarizing pro-

cessing is patch-based optimization operator, thus ef-

fective initialization and computational efficiency are

critical for developing a practicable summarizing tool.

To address these problems, we use a content-aware 3D

mean-value coordinate (MVC) video warping approach,

the warped results is “close enough” to the solution,

works as the initialization value of the video summa-

rizing system. Furthermore, using the correspondence

between the source video and the warped video pro-

duced during MVC warping, we proposed a 3D ap-

proximately nearest neighbor search method to acceler-

ate the video summarization processing. Guided by the

mesh-correspondence as prior information, the nearest

neighbor search is much faster and more accurate. The

proposed approach can be used to address a variety of

other problems, including video reshuffling and video

object removal.

This paper makes the following three main contri-

butions:

– We combine the advantages of both warping and

summarization methods, where the warping method

gives an initial edit result which is then refined by

summarization method.

– We present an efficient video summarizing tool, which

is based on 3D bidirectional similarity measure.

– We propose a MVC mesh constrained Patch-Match

method for nearest neighbor searching between videos.

2 Related work

Image retargeting: Most content aware methods at-

tempt to take advantages from the detection of pixel

prominence. They either discard or distort the homo-

geneous regions in order to absorb the resulting distor-

tion when changing the resolution of an image. These

methods can be roughly classified into cropping meth-

ods [14, 23, 20], seam carving methods [1, 16], warping

methods [8, 30, 32, 24], and multi-operators techniques

[17] integrating crop and carve seams. As an alterna-

tive, Pritch et al. [15] presented a Shift-Map technique

that allows removing a band region at a time, instead

of a pixel-wise seam used in the seam carving methods,

enabling the removal of entire objects. Recently, Rubin-

stein et al. [18] made comprehensive perceptual study

and analysis on existing image retargeting approaches,

and presented a methodological approach for evaluating

seven retargeting methods.

Video retargeting: Video retargeting using crop-

ping [4, 13, 3] may produce controlled virtual camer-

a motions. Virtual camera motion may be quite large

when processing video with dramatically temporal dy-

namics, and important objects might be discarded com-

pletely. Image resizing methods were extended to video

by constraining temporally-adjacent pixels into the re-

targeting optimization [30, 16, 32]. Due to camera and

dynamic motion, temporally-adjacent pixels do not nec-

essarily contain corresponding objects, so that objects

may deform inconsistently between frames, resulting in

waving artifacts. Wang et al. [25] partially addressed

this temporal coherence problem by explicit detection

of camera and object motions. The spatial limitation

affects most video resizing methods[30, 16, 32, 25]: if

salient objects cover the entire frame space, their tem-

porally consistent resizing degenerates into linear scal-

ing. By combining warping with temporally-based crop-

ping, Wang et al. [26] utilized degrees of freedom in the

time dimension to overcome this spatial limitation. Al-

though this approach produced pleasing results, howev-

er, it will introduce such artifacts as virtual camera mo-

tions. Additionally, this approach still can not work well

when the salient object cover a large part of the video,

and can not produce visually coherent small sized sum-

maries. Later, they used per-frame optimization [27]to

further improve their work.

Data summarization: Simakov et al. [22] consid-

ered the problem of image and video retargeting as

a maximization of bidirectional similarity between s-

mall patches in the original and output images, and
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(a) (b) (c) (d)

Fig. 1: Video retargeting and comparisons. (a) Source video, (b) uniform scaling, (c) result of Want et al. [26], (d)

Our summarization result.

this approach can be used to address a variety of oth-

er problems, including automatic cropping, completion

and synthesis of visual data, photo reshuffling, object

removal. A similar objective function and optimization

algorithm was independently proposed by Wei et al. [28]

as a method to create texture summaries for faster tex-

ture synthesis. Unfortunately, the approach of Simakov

et al. is slow to minimize a path-based optimization.

Barnes et al. [2] proposed a randomized algorithm for

fast nearest neighbor matching, which accelerates the

summarization computing to obtain interactive speed-

s for image editing with moderate size. More recently,

using the high-level symmetry semantic, Wu et al. [31]

presented a image resizing method by symmetry sum-

marization, which removes or replicates the repetitive

elements/regions in a more semantic fashion, and hence

can better preserve the image symmetry structure.

Mean-Value Coordinates: Floater [6] introduced

the Mean-Value Coordinates (MVC) which are moti-

vated by the Mean-Value Theorem for harmonic func-

tions. These coordinates approximate a harmonic-like

solution to the boundary interpolation problem. They

are well defined over the entire plane for arbitrary pla-

nar polygons without self-intersections, smooth, and in-

variant under similarity transformations [9]. MVC co-

ordinates have also been extended to 3D polyhedra and

used for space deformation [10, 7]. More recently, Farb-

man et al. [5] proposed a mean-value coordinate ap-

proach to accelerate seamless Poisson image and video

cloning, where rather than solving a large linear sys-

tem to perform Poisson interpolation, the value of the

interpolant at each interior pixel is given by a weighted

combination of values along the boundary. In this work,

we explore the novel use of MVC as a alternative for

solving video warping (retargeting).

3 Initialization by MVC Warping

The basic mechanism behind video warping methods

is non-uniformly deforming the grids defined on video

data, where the grids on important regions remain un-

changed while grids on less salient regions are serious-

ly distorted. This leads to visible distortion artifacts

when background region is complex. For example, in

the warping result produced by Wang et al. [26] (Fig-

ure 1 (c)), though the man in the foreground is pre-

served well, the doors in the background are squeezed

too much. The method in this paper tries to solve this

problem. We use the warping result as an initial so-

lution, then we refine it using summarization method

based on proposed 3D bidirectional similarity measure.

Figure 1 (d) shows our final result.

Fig. 2: The top left is source video, on which a tetrahe-

dral mesh is built (top right). The source mesh is then

warped into its half size (the bottom right). At last, the

output video is received by interpolation.

Instead of using grids in each frame [26], we em-

ploy the TetGen [21], a tetrahedral mesh generator, to

generate a tetrahedral mesh for video data (Figure 2

(b)). Then based on the tetrahedral mesh, we devel-

op a content-aware video warping method based on 3D

mean value coordinate (MVC), due to its simplicity and

efficiency. Warping is transformed into a parametriza-

tion problem of finding deformed mesh which represent-
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(a) (b) (c) (d)

Fig. 3: MVC warping and video summarization incorporating MVC warping.(a) Source video, (b) uniform scaling,

(c) MVC warping, (d) Our summarization results produced by correcting the MVC warping result.

ing the warped video, as illustrated in Figure 2 (c). We

represent video using tetrahedron mesh M = {V,E,Q},
where V = {v1, v2, ..., vn} ∈ R3 is the set of vertex posi-

tions, E and Q denote the edges and tetrahedron faces,

respectively. The new deformed vertex positions are de-

noted by V = {v′1, v′2, ..., v′n} ∈ R3. The connectivity is

unalterable during the warping process.

To emphasize salient objects in video, we calcu-

late saliency map (including the object motion)for the

source video using the similar methods in [25, 26]. Each

vertex vi of mesh M is then associated with a saliency

value ωi which is the average of surrounding pixels. The

salient objects will have large ω value. The tetrahedral

meshes with less salient vertices will be distorted, the

salient objects should be preserved.

For each internal vertex vi ∈ V , we define the mean-

value coordinates λi,j [7, 9] with respect to its one-ring

neighbors vi,1, ..., vi,di , where vi,1, ..., vi,di is a closed re-

gion Ω, and di is the number of vertices on Ω. Based

on the properties of mean-value coordinates [7, 9], vi−
di∑
j=1

λi,jvi,j = 0. When source mesh S is deformed to

target mesh T , the salient objects should be shape-

preserved and the content deformation of the video

should be smooth. To achieve this goal, for the cor-

responding vertex v′i,j of each v′i in T , the distortion

energy expression (v′i −
di∑
j=1

λi,jv
′
i,j)

2 should be as least

as possible for the salient objects. That is, each vertex

v′i should keep the same mean-value coordinates λi,j
respect to its neighbors v′i,1, ..., v

′
i,di

as vertex vi does.

We define the total distortion energy by summing up

the individual vertex energy term for each internal ver-

tex v′1, ..., v
′
n and adding the saliency weight ωi, such

that more distortion would be allowed in areas of less

significance:

FS =

n∑
i=1

ωi(v
′
i −

di∑
j=1

λi,jv
′
i,j)

2 (1)

Apart from the shape-preserving term FS which pre-

serve the salient objects, we further use a common reg-

ularization term FR to smooth the deformation differ-

ence between adjacent tetrahedrons Ai and Aj , which is

defined as FR =
∑
i ui

∑
j∈N(i) ‖Ai −Aj‖

2
F . The degree

of penalization is controlled by weights ui, which are

computed as content saliency: regions with high salien-

cy deserve high weights to prevent serious distortion.

The MVC warping function consisting of the shape-

preserving deformation term and regularization term is

defined as following:

F = F (v′1, v
′
2, ..., v

′
n) = FS + β · FR (2)

subject to video boundary constraints. The weight β

is used to balance the two energy terms. We find that

β = 2 is effective for most cases. The energy function

can be minimized using an iterative solver such as re-

conditioned conjugate gradients (PCG) [19]. Our video

retargeting operation can be performed in X, Y , and
Z directions simultaneously, since the coordinates of

the mesh vertices are not coupled in energy function.

Finally, we can receive the final video warping results

by interpolating the vertex value of the tetrahedrons in

the deformed mesh T using method [10]. Figure 2 (d)

shows the 3D results generated using our MVC warp-

ing. In Figure 3 we show one frame of Figure 2, the

character is preserved well, but the background regions

near left and right boundaries are seriously distorted.

4 The 3D Bidirectional Similarity Measure

Simakov et al. [22] provided a summarizing method us-
ing bidirectional similarity, and claimed that a good
summarization result must contain as much as possible
information from the input data and should introduce
as few as possible new artifacts that were not in the
input data. A bidirectional distance measure with t-
wo terms (completeness and coherence terms) between
pairs of data are provided to quantitatively capture
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these two requirements.

d(S, T ) =

Dcomplete(S,T )︷ ︸︸ ︷
1

NS

∑
P⊂S

min
Q⊂T

D(P,Q) +

Dcohere(S,T )︷ ︸︸ ︷
1

NT

∑
Q⊂T

min
P⊂S

D(Q,P )

(3)

where S is the source visual data, T is the target data,

D is the SSD(sum of squared differences) of patch (P

and Q) pixel value in color space. NS and NT are the

number of the patches used in S and T , respectively.
It has been shown that this method can be used for

image retargeting (summarizing), collages, reshuffling
and so on. However, when processing video, it is im-
portant to keep the temporal consistency of the video
content. We develop a 3D bidirectional similarity mea-
sure as the video summarization tool in our system:

d(S, T ) =

Dcomplete(S,T )︷ ︸︸ ︷∑
P⊂S

WPD(P, Q̃)∑
P⊂S WP

+

Dcohere(S,T )︷ ︸︸ ︷∑
Q⊂T

WP̃D(Q, P̃ )∑
Q⊂T WP̃

+

Dconsistent(S,T )︷ ︸︸ ︷
1

NT

∑
Q⊂T

D(Q,Q′)

(4)

Compared with (3), we add in Equation (4) a con-

sistency term, which ensures that the summarization

result is smooth and temporally consistent. Here, Q is

still a 3D patch in the output video, Q′ is a 3D patch in

the initial result I generated using MVC warping, and

Q′ have the same location of Q. P̃ = arg min
P⊂S

D(Q,P )

and Q̃ = arg min
Q⊂T

D(P,Q). WP and WP̃ are two adap-

tive weights described in next section.

Though the warping result has distortion artifacts,

it is consistent in the temporal space without jitter-

ing. With the consistency term Dconsistent, we use the

inherent consistency in warping result to help keep con-

sistency in summarization processing. In Figure 5, we

give the comparison results with [22]. The method of

[22] produces blurring results due to the weighted av-

erage of inaccurate patch value used in the optimiza-

tion computing. Our 3D bidirectional similarity mea-

sure produces more consistent result.

In order to reduce computation time, inspired by

[11] (where the authors synthesize solid texture from

exemplar image), we only measure the differences on

the three slices orthogonal to the main axes of the video

volume, instead of measuring the whole 3D patches, as

illustrated in Figure 4. The distance form 3D patch P

to Q is defined as:

D(P,Q) =
∑

i∈{x,y,z}

‖Pv,i −Qv,i‖r. (5)

Fig. 4: 3D patch similarity measure using the differ-

ences on the three slices orthogonal to the main axes of

the video volume.

(a)

(b) (c)

Fig. 5: Summarization comparisons (a) Source video,

(b) results of [22], (c) Our result of 3D bidirectional

similarity.

Here ν refers to a single voxel, which is the center of

3D patch P , and Pν,x, Pν,y and Pν,z are the vector-

ized neighborhoods of v in the slices orthogonal to the

x, y, and z axis, respectively. Qν,x , Qν,y and Qν,z are

defined in the similar way. The exponent r = 0.8 caus-

es the optimization to be more robust against outliers.

Compared with solid 3D patch similarity measure, the

proposed method is much faster, in addition, the blur-

ring artifacts can be alleviated.

4.1 Optimization Update Rule

We obtain an output video by minimizing equation (4):

Toutput = argmin
T
d(S, T ). (6)

We use EM algorithm to solve Equation (6). Let p ∈
S be a pixel in S, and let S(p) be its color. In the

(l + 1)th iteration, for each pixel q in T l+1, its value is

the average of three kinds of pixels in the input video
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S, and the initial MVC warping result I, respectively.

We set T 0 as I:

1. In the coherence term: for all patches Q1, ..., Qm
containing q, there will be corresponding (most sim-

ilar) patches P̃1, ..., P̃m in S. Thus, the first kind of

pixels are p̃1, ..., p̃m in P̃1, ..., P̃m corresponding to

the location of pixel q within Q1, ..., Qm. Here, m is

the number of pixels in patch.

2. In the complete term: suppose there are n patch-

es P1, ..., Pn in S, whose nearest patches in T l are

Q̃1, ..., Q̃n, and Q̃1, ..., Q̃n just contain pixel q. The

second kind of pixels are pj in Pj corresponding to

the location of pixels q within Q̃j . Note that n may

be zero if no patch in S points to a patch containing

q ∈ T l as its most similar patch.

3. In the consistent term: similar to the coherence

term, for each patch Qk containing q, there will be a

corresponding patch Q′k in the initial MVC warping

video I. Thus, the third kind of pixels are q′k in Q′k
corresponding to the location of q within Qk. The

number of such kind of pixels is also m.

According to the above analysis, we compute the

new value for pixels q in output video T l+1 as:

T l+1(q) =

(∑n
j=1 WPj

S(pj)∑n
j=1 WPj

+

∑m
i=1 WP̃i

S(p̃i)∑m
i=1 WP̃i

+

1

NT

m∑
k=1

I(q′k)

)
/

 n∑
j=1

WPj
+

m∑
i=1

WP̃i
+

m

NT

 (7)

Figure 1 (d), Figure 3 (d) and Figure 5 (c) shows

results of our summarization method. Please refer to

supplemental video for more apparent comparison.

4.2 Adaptive Weights Using Histogram Matching

Iterative EM optimization may lead to blurring in the

output video. Inspired by [11], we consider assigning

adaptive weights WP and WP̃ for pixels joining in the

averaging process, which gives more weights to impor-

tant pixels. This way ensures that the histogram of out-

put is similar to that of source video, which alleviates

the risk of falling into the local minima during the op-

timization processing and improves the results.
In each M-step, we build a histogram with 32 bins

for each patch in both source video and output video.
Let HP,j be the histogram of jth (j ∈ 1, 2, 3 if using
RGB color space) channel of patch P . H(b) be the
value of bth bin of the histogram, the difference of t-
wo histograms is =(HP , HQ) =

∑3
j=1

∑32
b=1(HP,j(b) −

HQ,j(b)). In the (l + 1)th iteration, the new weights

W l+1
P for patch P after histogram matching is defined

as:

W l+1
P = W l

P /=(HP , HQ̃) (8)

where,W l
P is the weight of patch P in the last iteration,

Q̃ is the most nearest patch corresponding to P . At

the very beginning, W 0
P is the average saliency value

computed in the warping step.

Figure 6 gives a comparison before and after his-

togram matching, which shows that the histogram match-

ing alleviates the blurring artifacts greatly in the sum-

marization results.

5 Accelerating By Mesh Constrained 3D

Patch-Match

Barnes et al. [2] proposed a randomized approximate-

ly nearest neighbor matching algorithm for structure

image editing. The algorithm is mainly based on two

key observations: Firstly, the natural coherence in the

structural image allows propagating such good match-

es quickly to surrounding areas; secondly, good patch

matches can be found via random sampling. Barnes et

al. [2] applied three main components, initialization,

propagation and random search to implement the above

two observations. In this paper, we extend this ap-

proach on video summarization. However, applying this

method directly on 3D patch matches is extremely s-

low, furthermore, as video summarization is more com-

plicated than image summarization. To address above

problem, we incorporate the MVC warping results into

the summarization process, and using the warping mesh

to constrain the Propagation stage in the Patch-Match

method.

Mesh Constrained Propagation: As the 2D Patch-

Match, we attempt to improve patch pairs f(x, y, z)

using the known offsets of f(x− 1, y, z), f(x, y − 1, z),

f(x, y, z − 1). Let D(v) denote the patch pair distance

between the patch at (x, y, z) in S and patch (x, y, z)+v

in T , we take the new value for f(x, y, z) to be the

arg min of {D(f(x, y, z)), D(f(x − 1, y, z)), D(f(x, y −
1, z)), D(f(x, y, z−1))}. The basic idea is that if (x, y, z)

has a correct mapping and is in a coherent region R,

then all of patch pairs in R, back, below and right of

(x, y, z) will be filled with the correct mapping. More-

over, on even iterations, to improve f(x, y, z), we prop-

agate information up, front and left by examining patch

pairs in reverse scan order, using f(x+ 1, y, z), f(x, y+

1, z) and f(x, y, z + 1) as our candidate patch pairs.

Although the above propagation works well, but it is

very slow for a moderate video. We constrain the propa-

gation domain to improve speed. Suppose a tetrahedron
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(a) (b) (c)

Fig. 6: Video retargeting incorporating histogram matching and comparisons. (a) source video, (b) result without

histogram matching, (c) result with histogram matching.

(mesh) A in the source video is deformed into tetrahe-

dron A′ in the retargeted video, the nearest patch of

pixel p ∈ A should be constrained in A′ or its neighbor-

ing tetrahedrons. Similarly, the nearest patch of pixel

q ∈ A′ should be constrained in A or its neighborhood-

s. Thus, in our method, we not only perform propaga-

tion using the image structure, but also constrain the

nearest patch in a specified regions. Using this strate-

gy, we not only accelerate nearest patch matching, but

also avoid the artifacts such as undesirable local min-

ima artifacts. Note that in video summarization, it is

important to keep the temporal consistency. In nearest

neighbor searching, we have to give more restrict for

the neighbor search in temporal direction, and penalize

the violation of temporal relations between the objects.

6 Results and discussion

Our system targets towards high level video editing,

and can generate video retargeting and summarization

results both automatically and interactively. We imple-

mented our algorithm on a computer with 2 Xeon(R)

CPUs at 2.27GHz and 4GB RAM. Our MVC warping

typically takes less than 2 seconds to process an video

streaming with size of 640×360×120, while the compu-

tation time also depends on the resolution of the tetra-

hedron mesh, we usually build a mesh with resolution

about 50× 30× 20 for aforementioned video. The main

time-consuming step is the nearest neighbor matching

in our summarization system. It usually takes between

8 and 15 minutes to summarize aforementioned size of

video to a target video with size of 320 × 360 × 120

on CPU, similarly, the computation time also depends

on the size of the target video, and the number of the

iteration.

In this section, besides of the video retargeting, we

show that the proposed approach can be used to ad-

dress a variety of other problems, including video sum-

marization, completion, reshuffling. We also present the

comparison results with the state-of-the-art video retar-

geting and summarizations methods.

Video retargeting: Our system can achieve high-

quality video retargeting to arbitrary aspect ratios for

complex videos containing diverse camera and dynamic

motions. Most previous content-aware retargeting meth-

ods concentrated on spatial considerations, attempting

to preserve the shape of salient objects in each frame

by removing or distorting homogeneous less important

content, however, these methods may cause waving and

squeezing artifacts due to fundamentally limited space

used for sacrificing. By employing motion information,

we first warp the video, which distributes distortion in

both spatial and temporal dimensions, then based on

the warping results, we correct the warping results us-

ing the summarizing techniques. Our method can retar-

get challenging videos with complex motions, numerous

prominent objects, even the video with foreground and

background regions heavily correlated.

Our method compares favorably with state-of-the-
art retargeting systems. In Figure 1, Figure 5, Figure 7,

and Figure 8, we compare with several other competing

methods [22, 2, 26]. The bidirectional similarity mea-

sure [22] can be extended to video summarization. How-

ever, due to the weighted average of inaccurate patch

value used in the optimization computing, some content

in the video is blurred, as illustrated in Figure 5. The

method [22] can be accelerated using the randomized

patch match method [2]. As the nearest patch match

is randomized, the search results may not be accurate,

and the method [2] may fall into local minima, which

may leads to undesirable results such as distortion (Fig-

ure 7). Compared with our method, more iterations and

computation time are required to receive the final stable

results using the gradual resizing [22].

Wang et al. [26] utilized freedom degree in the time

dimension to overcome spatial limitation in video re-

targeting, and received pleasing results for most input

videos. However, by combining warping with temporally-

based cropping, this approach will introduce such arti-
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(a) (b) (c) (d)

Fig. 7: Video retargeting comparisons, (a) source video, (b) result of [22] accelerated using [2], (c) video retargeting

of [26], (d) result of our method. Note that all animals are preserved.

(a) (b) (c) (d)

Fig. 8: Video retargeting and reshuffling, (a) source video, (b) video retargeting of [26], (c) results of our method,

(d) video reshuffling results using our method.

(a) (b) (c) (d)

Fig. 9: video object removal, (a) source video, (b)object removal using [22], (c) MVC warping, (d) object removal

using our approach.

facts as virtual camera motions, when salient object-

s perform drastic motion, the retargeted results will

not be natural, as shown in Figure 7. Additionally, the

method [26] is essentially a warping method. As shown

in Figure 1, though the man in the foreground is pre-

served well, the doors in the background are squeezed

too much (Figure 1 (c)). However, our method can

be considered as a patch-based texture optimization,

it produces much better results, as illustrated in Fig-

ure 1(d). Finally, this approach still may not work well

when the salient object covers a large part of the video,

or when there are too many important objects in the

video. In these cases, when retargeting the source video

into a small target video, their temporally consistent re-

sizing degenerates into linear scaling, or many objects

have to be cropped out or be squeezed with heavy dis-

tortion, as illustrated in Figure 8.
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(a) (b) (c) (d)

Fig. 10: Video reshuffling, (a)source video, (b) object is shifted, (c) the video is summarized, and some parts of

chair is removed, (d) the video is summarized, and some parts of chair is cloned.

Video Completion: Video completion of large miss-

ing regions is a challenging task. Even the advanced

global optimization method [29] can still produce in-

consistencies where structured content needs to be com-

pleted. In many cases the boundaries of the missing re-

gion provide few or no constraints for a plausible com-

pletion. Importance weights ω can also help to remove

undesired objects from the target video in the summa-

rization process. Combining importance weights with

the constraint of nearest neighbor search regions, our

video summarization system can be used for video com-

pletion and object removal, as shown in Figure 9.

We have compared performance and quality with

competing methods [22, 2] in video completion. As shown

in Figure 9, the tortoise in the source video is successful-

ly removed in the summarized video, and the structures

are well completed, which is consistent with the bound-

ary content. Using the randomized correspondence al-

gorithm [2], we observe that there are “ghosting” ar-

tifacts left in the summarized video. These artifact-

s happen because of the randomized initialization for

energy optimization and the randomized nearest neigh-

bor search. Note that for video completion, it is impor-

tant to keep the temporal consistency, thus, in nearest

neighbor search, we have to give more restrict and larg-

er weight for the neighbor search in temporal direction,

and penalize the violation of temporal relations between

the objects.

Video reshuffling: Based on the mesh correspond-

ing information built during the MVC warping, incor-

porating the constrained randomized correspondence

and user interactivity, our system can effectively manip-

ulate the video reshuffling. Our video reshuffling works

as follows, we first warp the source video into the target

video using the MVC method. Then in the target video,

we drag the user specified object to the destination lo-

cation. Based on the mesh corresponding information

built during the MVC warping, we constrain the regions

for nearest neighbor search to synthesize the specified

object. The hole left by the specified object in the origi-

nal region can be completed using our system provided

in the above section. With appropriate manual inter-

vention, our system can remove, swap, copy, stretch,

and zoom the user specified objects in the video, while

keeping the video reshuffling results spatially consistent

and temporally coherent.

As illustrated in Figure 8 and Figure 10, we give sev-

eral reshuffling results. The object is moved, enlarged,

or parts of the object are cloned. Our system is more

convenient for user interaction than [22, 2]. The us-

er constraints described in MVC warping method can

succeed in preserving lines and regions, and define a

satisfied initialization for bidirectional similarity mea-

sure. Combining with powerful and versatile editing

tool of patch-based optimization, our system can grad-

ually rearrange the video content to align with these

constrained regions, and reshuffle objects automatical-

ly.

Limitation: Although the proposed method great-

ly speed the nearest neighbor search process, however,

we still can not obtain interactive video editing summa-

rization, we would like to further accelerate the nearest

neighbor search, one possible approach is to acceler-

ate the speed on the graphics hardware-GPU. Similar

with all video retargeting and summarization approach-

es, our algorithm does have some failure cases, for ex-

ample, extreme edits to an video can sometimes pro-

duce unsatisfied results, where our MVC warping can

not produce a plausible results, and the summarizing

step can not correct the results due to extreme edits.

7 Conclusion and future work

We proposed an efficient video data summarization sys-

tem combining content-ware warping and patch-based

optimization. Our method combines both the advan-

tages of video warping and patch-based video optimiza-

tion, the visually important regions can be well pre-

served, while the non important regions can be effi-

ciently removed or squeezed with respect to the de-

sired scaling factors. Our system can produce spatially
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and temporally coherent video summarization results

for complex video containing dynamic motions.

In the future, we will construct a more flexible adap-

tive tetrahedralization method for the video volume,

the tetrahedralization method should be more edge and

saliency aware, which may result in more accurate warp-

ing results. In addition, we would like to work on the

video synopsis which retarget the video both the spatial

and temporal direction.
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